

Document Number: BSSRM
Rev. 1.0
07/2007

Freescale BeeStack™
Software Reference Manual

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-521-6274 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use
Freescale Semiconductor products. There are no express or implied copyright licenses granted
hereunder to design or fabricate any integrated circuits or integrated circuits based on the information
in this document.
Freescale Semiconductor reserves the right to make changes without further notice to any products
herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any
liability arising out of the application or use of any product or circuit, and specifically disclaims any
and all liability, including without limitation consequential or incidental damages. “Typical” parameters
that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating parameters,
including “Typicals”, must be validated for each customer application by customer’s technical
experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights
of others. Freescale Semiconductor products are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other applications intended to
support or sustain life, or for any other application in which the failure of the Freescale Semiconductor
product could create a situation where personal injury or death may occur. Should Buyer purchase
or use Freescale Semiconductor products for any such unintended or unauthorized application,
Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other
product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2006, 2007. All rights reserved.

BeeStack™ Software Reference Manual, Rev. 1.0

Freescale Semiconductor i

Contents
About This Book. vii
Audience . vii
Organization . vii
Revision History . viii
Conventions . viii
Definitions, Acronyms, and Abbreviations . viii
Reference Materials . x

Chapter 1
Introduction

1.1 What This Document Describes . 1-1
1.2 What This Document Does Not Describe. 1-1

Chapter 2
ZigBee Overview

2.1 Network Elements. 2-2
2.1.1 Device Types . 2-2
2.1.2 Star Network . 2-4
2.1.3 Tree Network . 2-5
2.1.4 Mesh Network. 2-6
2.1.5 Personal Area Network . 2-7
2.1.6 Channels . 2-7
2.1.7 Device and Service Discovery . 2-7
2.1.8 Addressing/Messaging . 2-7
2.1.9 Binding . 2-8
2.2 Application Elements . 2-9
2.2.1 Applications . 2-9
2.2.2 Attributes . 2-10
2.2.3 Clusters . 2-10
2.2.4 Endpoints . 2-10

Chapter 3
BeeStack Features

3.1 BeeStack Task Scheduler . 3-1
3.2 BeeStack Application Programming Interface . 3-2
3.3 Source Files – Directory Structure . 3-4
3.4 Miscellaneous Source Files . 3-5

Chapter 4
Application Framework

4.1 AF Types. 4-2
4.2 Endpoint Management . 4-3

BeeStack™ Software Reference Manual, Rev. 1.0

ii Freescale Semiconductor

4.2.1 Simple Descriptor . 4-3
4.2.2 Register Endpoint . 4-3
4.2.3 De-register Endpoint . 4-4
4.2.4 Get Endpoint . 4-4
4.2.5 Find Endpoint Descriptor . 4-4
4.3 Message Allocation. 4-5
4.4 AF Data Requests . 4-5
4.5 AF Data Indications . 4-8

Chapter 5
Application Support Sub-layer

5.1 Direct and Indirect Data Addressing . 5-2
5.2 APS Layer Interface . 5-2
5.2.1 Get Request. 5-2
5.2.2 Set Request . 5-3
5.2.3 Get Table Entry. 5-3
5.2.4 Set Table Entry . 5-3
5.2.5 Add to Address Map . 5-3
5.2.6 Remove from Address Map . 5-4
5.2.7 Find IEEE Address in Address Map. 5-4
5.2.8 Get NWK Address from IEEE Address . 5-4
5.2.9 Get IEEE Address from NWK Address . 5-4
5.3 Binding . 5-5
5.3.1 Bind Request. 5-5
5.3.2 Unbind Request. 5-5
5.3.3 Find Binding Entry . 5-6
5.3.4 Find Next Binding Entry. 5-6
5.3.5 Clear Binding Table . 5-6
5.3.6 Add Group Request . 5-7
5.3.7 Remove Group Request . 5-7
5.3.8 Remove Endpoint from All Groups Request . 5-7
5.3.9 Identify Endpoint Group Membership . 5-8
5.3.10 Group Reset Function . 5-8
5.4 AIB Attributes. 5-8

Chapter 6
ZigBee Device Objects

6.1 ZDO State Machine . 6-2
6.2 General ZDO Interfaces . 6-2
6.2.1 Get State Machine. 6-2
6.2.2 Start ZDO State Machine without NVM . 6-3
6.2.3 Start ZDO State Machine with NVM . 6-3
6.2.4 Stop ZDO State Machine . 6-3
6.2.5 Stop ZDO and Leave . 6-3

BeeStack™ Software Reference Manual, Rev. 1.0

Freescale Semiconductor iii

6.3 Device Specific ZDO Interfaces . 6-4
6.3.1 ZC State Machine . 6-4
6.3.2 ZR State Machine . 6-5
6.3.3 ZED Machine State. 6-6
6.4 Selecting PAN ID, Channel and Parent . 6-8

Chapter 7
ZigBee Device Profile

7.1 Application Support Layer . 7-1
7.2 Device and Service Discovery . 7-2
7.2.1 Device Discovery . 7-2
7.2.2 Service Discovery . 7-2
7.3 Primary Discovery Cache Device Operation . 7-3
7.4 Binding Services . 7-4
7.5 ZDP Functions and Macros . 7-4
7.5.1 ZDP Register Callback . 7-4
7.5.2 ZDP NLME Synchronization Request . 7-4
7.6 Device and Service Discovery – Client Services . 7-5
7.6.1 Network Address Request . 7-6
7.6.2 IEEE Address Request Command . 7-6
7.6.3 Node Descriptor Request . 7-6
7.6.4 Power Descriptor Request . 7-7
7.6.5 Simple Descriptor Request . 7-7
7.6.6 Active Endpoint Request . 7-7
7.6.7 Match Descriptor Request . 7-8
7.6.8 Complex Descriptor Request . 7-8
7.6.9 User Descriptor Request . 7-8
7.6.10 Discovery Cache Request . 7-9
7.6.11 End Device Announce . 7-9
7.6.12 User Descriptor Set Request . 7-10
7.6.13 Server Discovery Request. 7-10
7.6.14 Discovery Cache Storage Request . 7-10
7.6.15 Store Node Descriptor on Primary Cache Device . 7-11
7.6.16 Store Power Descriptor Request . 7-11
7.6.17 Active Endpoint List Storage Request . 7-12
7.6.18 Simple Descriptor Storage Request . 7-12
7.6.19 Remove Node Cache Request. 7-13
7.6.20 Find Node Cache Request. 7-13
7.7 Binding Management Service Commands . 7-13
7.7.1 End Device Bind Request . 7-14
7.7.2 Bind Request. 7-15
7.7.3 Unbind Request. 7-15
7.7.4 Local Bind Register Request . 7-16
7.7.5 Replace Device Request . 7-16

BeeStack™ Software Reference Manual, Rev. 1.0

iv Freescale Semiconductor

7.7.6 Store Backup Bind Entry Request . 7-17
7.7.7 Remove Entry from Backup Storage . 7-17
7.7.8 Backup Binding Table Request . 7-18
7.7.9 Recover Binding Table Request . 7-18
7.7.10 Source Binding Table Backup Request . 7-19
7.7.11 Recover Source Binding Table Request . 7-19
7.8 Network Management Services . 7-20
7.8.1 Management Network Discovery Request . 7-20
7.8.2 Management LQI Request . 7-20
7.8.3 Routing Discovery Management Request . 7-21
7.8.4 Management Bind Request . 7-21
7.8.5 Management Leave Request . 7-21
7.8.6 Management Permit Joining . 7-22
7.8.7 Management Cache. 7-22
7.9 ZDO Layer Status Values . 7-22

Chapter 8
Network Layer

8.1 Channel and PAN Configuration . 8-2
8.1.1 Channel Configuration . 8-2
8.1.2 PAN ID . 8-3
8.1.3 Beacon Notify . 8-3
8.1.4 NWK Layer Interfaces . 8-4
8.1.5 NWK Layer Filters . 8-5
8.2 NWK Information Base . 8-5

Chapter 9
Application Support Layer

9.1 ASL Utility Functions. 9-1
9.2 ASL Data Types . 9-1
9.3 ASL Utility Functions. 9-3
9.3.1 Initialize User Interface . 9-3
9.3.2 Set Serial LEDs. 9-3
9.3.3 Stop Serial LEDs . 9-3
9.3.4 Set LED State . 9-3
9.3.5 Write to LCD . 9-3
9.3.6 Change User Interface Mode . 9-4
9.3.7 Display Current User Interface Mode. 9-4
9.3.8 Update Device. 9-4
9.3.9 Handle Keys . 9-4
9.3.10 Display Temperature. 9-4

Chapter 10

BeeStack™ Software Reference Manual, Rev. 1.0

Freescale Semiconductor v

BeeStack Common Functions

10.1 BeeStack Common Prototypes . 10-1
10.2 Common Network Functions . 10-2

Chapter 11
User-Configurable BeeStack Options

11.1 Compile-Time Options . 11-1
11.2 More Compile-time Options . 11-3

Chapter 12
BeeStack Security

12.1 Security Overview . 12-1
12.2 Security Configuration Properties . 12-2
12.2.1 mDefaultValueOfNwkKeyPreconfigured_c. 12-2
12.2.2 mDefaultValueOfNwkSecurityLevel_c . 12-2
12.2.3 mDefaultValueOfNetworkKey_c . 12-2
12.2.4 gDefaultValueOfMaxEntriesForExclusionTable_c . 12-2
12.3 ZigBee Trust Center Authentication. 12-3

BeeStack™ Software Reference Manual, Rev. 1.0

vi Freescale Semiconductor

BeeStack™ Software Reference Manual, Rev. 1.0

Freescale Semiconductor vii

About This Book
This manual describes BeeStack, the Freescale implementation of the ZigBee wireless network protocol
stack. This manual explains the standard interfaces and device definitions that permit interoperability
among ZigBee devices.

Audience
This document is intended for software developers who write applications for BeeStack-based products
using Freescale development tools. It describes BeeStack APIs, control features, code examples, and
functional variables.

Organization
This document is organized into the following sections.
Chapter 1 Introduction – describes this document.
Chapter 2 ZigBee Overview – introduces ZigBee network concepts.
Chapter 3 BeeStack Overview – introduces the BeeStack architecture and source file

structure.
Chapter 4 Application Framework – introduces the function calls, macros, and APIs

available in the Application Framework (AF).
Chapter 5 Application Support Sub-layer – describes the function calls, macros, and APIs

available in the Application Support Sub-layer (APS).
Chapter 6 ZigBee Device Objects – introduces the function calls, macros, and APIs available

in the ZigBee device objects (ZDO).
Chapter 7 ZigBee Device Profile – introduces the ZigBee device profile (ZDP) and

associated macros, function calls, and prototypes.
Chapter 8 Network Layer – describes the function calls and macros available in the network

(NWK) layer.
Chapter 9 Application Support Layer – introduces the Application support functions and

macros.
Chapter 10 BeeStack Common Functions – introduces the BeeStack common interface

macros and function calls.
Chapter 11 User-Configurable BeeStack Options – introduces the BeeStack configurable

items.
Chapter 12 BeeStack Security – describes how BeeStack supports full ZigBee security for

stack profile 0x01 of the ZigBee 2006 specification.

BeeStack™ Software Reference Manual, Rev. 1.0

viii Freescale Semiconductor

Revision History
The following table summarizes revisions to this document since the previous release (Rev. 0.0).

Conventions
This BeeStack Reference Manual uses the following formatting conventions when detailing commands,
parameters, and sample code:

Courier mono-space type indicates commands, command parameters, and code examples.
Bold style indicates the command line elements, which must be entered exactly as written.
Italic type indicates command parameters that the user must type in or replace, as well as
emphasizes concepts or foreign phrases and words.

Definitions, Acronyms, and Abbreviations
Acronym or Term Definition
ACK Acknowledgement
ACL Access control list
AF Application framework
AIB Application support sub-layer information base
APDU Application support sub-layer protocol data unit
API Application programming interface
APL Application layer
APS Application support sub-layer
APSDE APS data entity
APSDE-SAP APS data entity - service access point
APSME APS management entity
APSME-SAP APS management entity - service access point

Revision History

Location Revision

Section 3.4
Section 4.2.2
Deleted 4.2.3
Rewrote 4.2.4
Rewrote 4.3
Section 5.2
Section 6.2
Section 7.1

Section 7.5.1
Section 7.6
Section 8.3

Section 9.1 and 9.2
Table 11-1
Table 11-2

New Section
Clarified last sentence.
Removed initiate data request.
Rewrote get endpoint.
Rewrote message allocation.
Added text and edited various sections.
Added text and edited various sections.
Added text and edited various sections.
Rewrote section.
Rewrote various sections.
Edited for clarity.
Added information.
Added information.
Added information.

BeeStack™ Software Reference Manual, Rev. 1.0

Freescale Semiconductor ix

ASDU APS service data unit
OTA Over the air: a radio frequency transmission
Binding Matching ZigBee devices based on services and needs
BTR Broadcast transaction record, the local receipt of a broadcast message
BTT Broadcast transaction table, holds all BTRs
CBC-MAC Cipher block chaining message authentication code
CCA Clear channel assessment
Cluster A collection of attributes associated with a specific cluster-identifier
Cluster identifier An enumeration that uniquely identifies a cluster within an application profile
CSMA-CA Carrier sense multiple access with collision avoidance
CTR Counter
Data Transaction Process of data transmission from the endpoint of a sending device to the endpoint

of the receiving device
Device/Node ZigBee network component containing a single IEEE 802.15.4 radio
Direct addressing Direct data transmission including both destination and source endpoint fields
Endpoint Component within a unit; a single IEEE 802.15.4 radio may support up to 240

independent endpoints
IB Information base, the collection of variables configuring certain behaviors in a

layer
IEEE Institute of Electrical and Electronics Engineers, a standards body
Indirect addressing Transmission including only the source endpoint addressing field along with the

indirect addressing bit
ISO International Standards Organization
LCD Liquid crystal display
LED Light-emitting diode
LQI Link quality indicator or indication
MAC Medium access control sub-layer
MCPS-SAP MAC common part sub-layer - service access point
MIC Message integrity code
MLME MAC sub-layer management entity
MLME-SAP MAC sub-layer management entity service access point
NIB Network layer information base
NLDE Network layer data entity
NLDE-SAP Network layer data entity - service access point
NLME Network layer management entity
NLME-SAP Network layer management entity - service access point

BeeStack™ Software Reference Manual, Rev. 1.0

x Freescale Semiconductor

NPDU Network protocol data unit
NSDU Network service data unit
NVM Non-volatile memory
NWK Network layer
Octet Eight bits of data, or one byte
OSI Open System Interconnect
PAN Personal area network
PD-SAP Physical layer data - service access point
PDU Protocol data unit (packet)
PHY Physical layer
PIB Personal area network information base
PLME-SAP Physical layer management entity - service access point
Profile Set of options in a stack or an application
RF Radio frequency
SAP Service access point
SKG Secret key generation
SKKE Symmetric-key key establishment protocol
SSP Security service provider, a ZigBee stack component
Stack ZigBee protocol stack
WDA wireless demo application
WPAN wireless personal area network
ZDO ZigBee device object(s)
ZDP ZigBee device profile
802.15.4 An IEEE standard radio specification that underlies the ZigBee Specification

Reference Materials
This following served as references for this manual:

1. Document 053474r13, ZigBee Specification, ZigBee Alliance, December 2006
2. Document 06027r04, ZB_AFG-ZCL_Foundation, ZigBee Alliance, October 2006
3. Document 053520r16, ZB_HA_PTG-Home-Automation-Profile, ZigBee Alliance, September

2006

BeeStack™ Software Reference Manual, Rev. 1.0

Freescale Semiconductor 1-1

Chapter 1
Introduction
This manual describes the Freescale BeeStack protocol stack, its components, and their functional roles in
building wireless networks. The function calls, application programming interfaces (API), and code
examples included in this manual address every component required for communication in a ZigBee
wireless network.

1.1 What This Document Describes
This manual provides ZigBee software designers and developers all of the function prototypes, macros,
and stack libraries required to develop applications for ZigBee wireless networks.

1.2 What This Document Does Not Describe
This manual does not describe how to install software, configure the hardware, or set up and use ZigBee
applications.

See the following documents for help in setting up the Freescale hardware and using other Freescale
software to configure devices.

• Freescale ZigBee Applications User’s Guide, (ZAUG)
• Freescale BeeKit Wireless Connectivity Toolkit User’s Guide, (BKWCTKUG)

Introduction

BeeStack™ Software Reference Manual, Rev. 1.0

1-2 Freescale Semiconductor

BeeStack™ Software Reference Manual, Rev. 1.0

Freescale Semiconductor 2-1

Chapter 2
ZigBee Overview
The BeeStack architecture builds on the ZigBee protocol stack. Based on the OSI Seven-Layer model, the
ZigBee stack ensures interoperability among networked devices. The physical (PHY), media access
control (MAC), and network (NWK) layers create the foundation for the application (APL) layers.

BeeStack defines additional services to improve the communication between layers of the protocol stack.
At the Application Layer, the application support layer (ASL) facilitates information exchange between
the Application Support Sub-Layer (APS) and application objects. Finally, ZigBee Device Objects (ZDO),
in addition to other manufacturer-designed applications, allow for a wide range of useful tasks applicable
to home and industrial automation.

BeeStack uses an IEEE® 802.15.4-compliant MAC/PHY layer that is not part of ZigBee itself. The PHY
layer encompasses features specified by IEEE 802.15.4 for packet-based, wireless transport. The MAC
sub-layer supports features specific to low-power radio frequency networks.

The NWK layer defines routing, network creation and configuration, and device synchronization. The
application framework (AF) supports a rich array of services that define ZigBee functionality. ZigBee
Device Objects (ZDO) implement application-level services in all nodes via profiles. A security service
provider (SSP) is available to the layers that use encryption (NWK and APS).

The complete Freescale BeeStack protocol stack includes the following components:
• ZigBee Device Objects (ZDO) and ZigBee Device Profile (ZDP)
• Application Support Sub-Layer (APS)
• Application Framework (AF)
• Network (NWK) Layer
• Security Service Provider (SSP)
• IEEE 802.15.4-compliant MAC and Physical (PHY) Layers

The combined PHY, MAC, NWK, and application layer elements shown in Figure 2-1 comprise the full
BeeStack implementation.

 ZigBee Overview

BeeStack™ Software Reference Manual, Rev. 1.0

2-2 Freescale Semiconductor

Figure 2-1. ZigBee Layers

2.1 Network Elements
A ZigBee network requires wireless devices programmed to communicate in any of several network
configurations. Each network requires a device acting as a ZigBee coordinator and at least one other device
with which to communicate.

2.1.1 Device Types
A ZigBee network is formed when a device declares itself a ZigBee coordinator (ZC) and permits other
nodes to join its network. ZigBee routers (ZRs) and ZigBee end devices (ZEDs) can join the network either
by joining the ZC directly or by joining ZRs that have already joined. ZRs permit nodes on the network to
communicate with each other even if they are not within radio range because ZRs and the ZC can pass
messages between nodes. ZEDs cannot pass messages between nodes; they can only send their own
messages and receive messages meant for them. The ZC also serves as the trust center when the network
employs security.

2.1.1.1 ZigBee Coordinator
The ZigBee coordinator roles include:

• Starting a network
• Selecting a Personal Area Network Identifier (PAN ID) for the network
• Allowing devices to join or leave the network
• Performing all the functions of a ZigBee router
• Containing the trust center in a secure network

A p p l i c a t io n
O b je c t

2 4 0

S
ec

ur
ity

S
er

vi
ce

P
ro

vi
de

r
M A C (I E E E 8 0 2 . 1 5 . 4)

N e t w o r k L a y e r
N W K

A p p l i c a t i o n S u p p o r t
S u b - l a y e r

A P S

A p p l i c a t io n
O b je c t

1

A p p l i c a t io n F r a m e w o r k (A F)
Z i g b e e
D e v i c e
O b j e c t
(Z D O)

ZD
O

M
anagem

entP
lane

P h y s ic a l (P H Y) L a y e r
A

pp
lic

at
io

n
La

ye
r

N
LM

E-S
AP

M L M E - S A PM L D E - S A P

P D - S A P P L M E - S A P

AP
SM

E-SAP

A P S D E - S A P
E n d P o i n t 0E n d p o i n t 1

A P S D E - S A P
E n d p o i n t 2 4 0
A P S D E - S A P

N L D E - S A P N L M E - S A P

 ZigBee Overview

BeeStack™ Software Reference Manual, Rev. 1.0

Freescale Semiconductor 2-3

2.1.1.2 ZigBee Router
The ZigBee router serves to:

• Route data between ZigBee devices
• Allow devices to join or leave the network
• Manage messages for its children that are end devices
• Optionally perform all the functions of a ZigBee end device

2.1.1.3 ZigBee End Device
The ZigBee end device is a reduced-function device that can:

• Sleep to save power, so it could be battery powered
• Require fewer memory resources because it does not store network-wide information or need to be

able to perform network-related services

ZEDs perform functions such as switching a light on or off or monitoring an occupancy sensor. If the ZED
primarily reports a sensor’s state, it may sleep between measurements. For a ZED reporting the state of a
switch, it can sleep until the switch is pressed, which might not occur for years. For the simplest end
devices, a common design goal is to have the node run on primary batteries for the length of the batteries’
shelf life.

2.1.1.4 Nodes
The collection of independent device descriptions and applications residing in a single unit, and sharing a
common 802.15.4 radio, defines a node in a ZigBee network. Theoretically, a ZigBee network can handle
more than 65,000 nodes.

Three network types common to ZigBee include the star, tree, and mesh configurations. Each network
must have one coordinator, and it will have at least one other device.

ZigBee networks employ a parent and child structure. A network forms when a device declares itself a ZC
and permits other nodes to join. The nodes joining that ZC become its children, and the ZC their parent.
Network parents have specific responsibilities. In some network types, ZEDs communicate only with their
parents, and that parent routes the ZED’s messages to another destination when required.

 ZigBee Overview

BeeStack™ Software Reference Manual, Rev. 1.0

2-4 Freescale Semiconductor

2.1.2 Star Network
A conventional star network consists of a coordinator with one or more ZEDs associated directly with the
ZC. In the star network shown in Figure 2-2, all other devices directly communicate with the ZigBee
Coordinator, and the coordinator passes all messages between end devices.

Figure 2-2. Standard Star Network Configuration

Zigbee End Device

Zigbee Coordinator

 ZigBee Overview

BeeStack™ Software Reference Manual, Rev. 1.0

Freescale Semiconductor 2-5

2.1.3 Tree Network
As shown in Figure 2-3, a tree network consists of a ZC with one or more routers and, optionally, one or
more ZEDs associated in a hierarchical structure. A tree network extends the star network with the use of
ZigBee routers (ZR).

All messages in a tree network move up or down the parent-child hierarchy. Each transfer from one node
to the next is a hop. The depth of a tree network is the maximum number of hops a message must make to
get from a source to a destination.

Every router can examine a message it has received to tell if the recipient is below it in the tree. If the
recipient is not one below it, the router will pass the message to its own parent.

Figure 2-3. Typical Tree Network

Z igbee D ev ice

Z igbe e E nd D ev ice

Z igbe e R ou te r

Z igbe e C oo rd ina to r

 ZigBee Overview

BeeStack™ Software Reference Manual, Rev. 1.0

2-6 Freescale Semiconductor

2.1.4 Mesh Network
In a mesh network, each device can communicate directly with other devices in the network. A mesh
network consists of a ZC that has one or more ZRs and optionally one or more associated ZEDs.

Figure 2-3 shows a simple ZigBee mesh network. Any device in a mesh network may send a message
addressed to any other device in the network. If the two devices are within radio range of each other, the
message moves in one hop, and no other devices are involved. If they are beyond each other’s radio range,
the message must travel from router to router, following a path that the network establishes based on its
routing efficiency.

Figure 2-4. Mesh Network Configuration

84

22

48

54

12

Zigbee End Device

Zigbee Router

Zigbee Coordinator

1
5 4

77

15

94

 ZigBee Overview

BeeStack™ Software Reference Manual, Rev. 1.0

Freescale Semiconductor 2-7

2.1.5 Personal Area Network
The personal area network (PAN) encompasses a unique address space on a radio channel. A PAN resides
on a channel, and the same PAN identifier may be used by another network in radio range without conflict
only on a different channel. In the future, channel hopping may be permitted; for now, a PAN forms on one
channel only.

NOTE
A ZigBee coordinator starts the network; however, the ZC is not required
for the network to continue to function. This means that in the event of a ZC
failure, it will not necessarily take down the entire network.

Networks can be extended by defining a device as a router (ZR), in a role similar to that of conventional
network routers. The ZR manages routing and provides access to its child devices. A ZR can act as a ZED,
and a ZC can play the role of a ZR, establishing communication paths and managing network traffic.

Networks can be structured in conventional star, tree, or mesh-tree configurations, as required by the user’s
application.

2.1.6 Channels
Channels are defined in accordance with the IEEE 802.15.4 specification. BeeStack applications use
channels 11-26 in the 2.4 GHz range. For more detail on channel assignments, see Chapter 8, “Network
Layer”.

2.1.7 Device and Service Discovery
ZigBee devices discover other ZigBee devices by broadcasting or unicasting a message. Devices send one
of two forms of device discovery requests, an IEEE address request and a NWK address request. Service
discovery allows a node to find nodes that offer services it needs or nodes that need services it offers. For
more information, see Chapter 7, “ZigBee Device Profile”.

2.1.8 Addressing/Messaging
Messages can be sent from one device to another once devices have identified each other. The commands
sent to application objects at the destination address include the node’s address and the source and
destination endpoint.

There are five addressing modes in ZigBee:
• 16-bit direct: short, or network, address
• 64-bit direct: long, or IEEE address
• Indirect (uses local binding table)
• Broadcast

— All nodes
— All routers and the coordinator
— All nodes that constantly monitor network traffic (RxOnWhenIdle)

 ZigBee Overview

BeeStack™ Software Reference Manual, Rev. 1.0

2-8 Freescale Semiconductor

— All endpoints on an individual node
• Group

Direct addressing requires the sending device to know the target device’s attributes:
• Address (which node?)
• Endpoint (which application within the node?)
• Cluster identifier (which object within the application?)

Every IEEE 802.15.4 radio has a 64-bit address that is unique in the world. Every node in a ZigBee
network has a 16-bit network address that is unique within that network. ZigBee does not send messages
with 64-bit addresses. When a ZigBee application tells the stack to send a message to an IEEE address, the
stack must find out what network address that node has before sending the message with the network
address.

Indirect addressing mode uses a local binding table to determine the destination node(s). The local binding
table can hold multiple destinations (destinations are always either direct-64 or group destinations). A
single data request can end up at multiple destinations, depending on the binding information. The binding
between source and destination must be established before the source node can use indirect addressing.
Every entry in the local binding table that contains the same source address as the data request are
considered destinations.

Nodes can broadcast messages in several ways. An application can send a message to an individual
network address and the endpoint 0xFF, which will cause the receiving stack to deliver that message to
every endpoint on the node. A message with 0xFFFF as the destination address goes to every node on the
network (within the specified radius of the message). A message to 0xFFFD goes to every device that is
always on (RxOnWhenIdle = TRUE). A message to 0xFFFC goes to every router and the coordinator.

Messages addressed to specific endpoints on a collection of devices use a single group address. That group
address may then be used to direct outgoing clusters, as well as the attributes contained in them, to each
of the devices and endpoints assigned to the group. Group addressing uses a 16-bit destination address with
the group address flag set in the APS frame control field. Included in the source are the cluster identifier,
profile identifier and source endpoint fields in the APS frame.

Endpoints require a form of sub-addressing in conjunction with the mechanisms of IEEE 802.15.4. An
endpoint number identifies individual switches and lamps, for example. A switch might use endpoint 5,
while a second switch might use endpoint 12.Each lamp that these switches control has its own endpoint
number. Endpoint 0 is reserved for device management. Each identifiable sub-unit in a node (such as the
switches and lamps) has its own specific endpoint address in the range 1-240.

2.1.9 Binding
Binding creates logical links between endpoints on devices, allowing them to work together to perform
specific tasks. Binding maintains information on each logical link in a binding table. The ZC or the source
device of the binding pair maintains the binding table for the network.

As shown in Figure 2-5, binding creates relationships between applications. For example, a single network
may contain many lights and switches, and binding allows any switch to control either a particular light or
a group of lights.

 ZigBee Overview

BeeStack™ Software Reference Manual, Rev. 1.0

Freescale Semiconductor 2-9

NOTE
Binding is unidirectional; a switch binds to a light, but not the light to the
switch.

Figure 2-5. Binding and Application Objects

2.2 Application Elements
This section introduces the application concepts, which are then detailed in later chapters along with code
examples, to help designers and developers in creating new BeeStack applications.

2.2.1 Applications
Application objects define the activities and functions in BeeStack. Each application runs as a component
of the top portion of the application layer. The manufacturers that implement the various applications
define both the applications and their functionalities.

Broad areas of applications, such as building automation or home automation, fall into specific application
domains.

Alternatively, an application profile may create sub-types within the cluster known as attributes. In this
case, the cluster is a collection of attributes specified to accompany a specific cluster identifier. Binding
decisions are made by matching the output cluster identifier to an input cluster identifier, assuming both
exist in the same profile.

Every application in BeeKit starts with BeekitAppInit.c. See Chapter 3, “BeeStack Features” for more
information.

Radio
f1

Radio
f3

Switch 1
Endpoint 8

Switch 2
Endpoint 12

Bindings create relationships
between applications

Lighting panel functionality added
with light application object

Switch functionality added
with switch application object

Binding
Switch with 1 radio and 2 endpoints

Lighting panel with 1 radio and 5 endpoints

Light 1
9

Light 2
17

Light 1
3

Light 1
21

Light 1
13

Node

Node Endpoints

 ZigBee Overview

BeeStack™ Software Reference Manual, Rev. 1.0

2-10 Freescale Semiconductor

2.2.2 Attributes
In BeeStack, an attribute is a data entity representing a physical quantity or state, a data item to read or
write. Data is communicated to other devices using commands with attributes included.

For example, a wireless UART has only clusters, and no attributes, while an ON/OFF light application uses
both the ZigBee cluster library (ZCL) and a home automation profile.

2.2.3 Clusters
Clusters contain the data flowing into or out of a device. The 16-bit cluster identifier, which is unique
within the application segment, identifies a specific cluster. Clusters can be thought of as behaving the
same way a port might in a traditional network. Within the protocol stack, the message sent from a client
gets directed to a specific point on the server side, and the attributes direct that message to the correct port,
or cluster.

The ZigBee device profile (ZDP) sends commands and responses contained in clusters, with the cluster
identifiers enumerated for each command and response. Each ZDP message is then defined as a cluster.

For example, an ON/OFF cluster sends a command from the client (the switch) to turn on or off an entity
on the server (the light). ZCL acts as a repository for cluster functionality. The ON/OFF message defines
one single attribute, containing the device’s status in binary form.

Figure 2-6. On and Off Lighting Application Stack Behavior

An application or profile uses the ZigBee cluster library (ZCL) to complete its work.

2.2.4 Endpoints
Applications reside on endpoints, which act as independent objects. The number assigned to an endpoint
is essentially the application’s address within the ZigBee device. This allows other devices to
communicate separately with each application on a device.

BeeStack provides services to allow endpoints to find other endpoints on the network with which they can
communicate to perform their intended tasks. An application can send a message to all endpoints using
gZbBroadcastEndPoint_c.

#define gZbBroadcastEndPoint_c 0xff

Server
(resp)

Client
(req)

On/Off On/Off

PHY layer

NWK layer

MAC layer

APL

Between nodes

 ZigBee Overview

BeeStack™ Software Reference Manual, Rev. 1.0

Freescale Semiconductor 2-11

A single device can have as many as 240 user application endpoints, and each endpoint can be independent
of the others. The ZDO resides as a separate application on endpoint 0.

Figure 2-7. Endpoints in ZigBee Network

Endpoints play three major roles in BeeStack, allowing:
• Different application profiles to exist within each node
• Separate control points to exist within each node
• Separate sensors or other devices to exist within each node

 ZigBee Overview

BeeStack™ Software Reference Manual, Rev. 1.0

2-12 Freescale Semiconductor

BeeStack™ Software Reference Manual, Rev. 1.0

Freescale Semiconductor 3-1

Chapter 3
BeeStack Features
BeeStack initializes itself by doing the following:

• Initializes the MAC and PHY layers
• Initializes the Timer Module
• Initializes the serial ports
• Switches off all the LEDs on the board
• Initializes the APS Layer
• Initializes the Application Framework
• Initializes the ZigBee Device Objects
• Initializes the NWK Layer
• Initializes the NVM Module

Every application starts in BeeAppInit(). The application task functions are called during initialization,
along with any application-specific initializations. Those commands include, for example, hardware
initialization and set up, table initialization, and power-up notification.

The function BeeStackInit() can be found in the BeeStackInit.c file; its initialization API is:
void BeeAppInit(void);

3.1 BeeStack Task Scheduler
BeeStack uses co-operative multi-tasking. Each task is a separate function that must relinquish control
often enough for the BeeStack components to get their work done in a timely manner. The BeeStack task
scheduler runs when the running task releases control. The tasks have fixed priorities, and the task
scheduler starts the highest-priority task that has an event waiting for it. If there are no tasks with events
waiting, the scheduler runs the idle task. The idle task has work of its own to do. The task scheduler is
provided as source code.

The task scheduler must be configured before it can be used to run BeeStack and the application as tasks.
Users configure Task Scheduler in BeeKit, defining the number of tasks that it handles, the task entry point
for each of the tasks, the priority of the tasks, and other configuration parameters.

The TS_Interface.h file configures Task Scheduler. The file is found in the following path:
<Installation Folder>\BeeStack\SSM\TS\Interface

A global task list defines the set of initial tasks in the application space, including at least one application
task. Optionally, tasks can be created or destroyed at run-time.

BeeStack Features

BeeStack™ Software Reference Manual, Rev. 1.0

3-2 Freescale Semiconductor

Figure 3-1. Task Scheduler Functionality

This macro defines the task scheduler interface:
#define _TS_INTERFACE_H_

For more information on the Task Scheduler, refer to the Freescale BeeStack Platform Reference Manual,
(FSPRM)

3.2 BeeStack Application Programming Interface
This reference manual explains the BeeStack function calls and application programming interfaces
(APIs). The functions fall into two categories: synchronous and asynchronous calls.

Synchronous calls return an immediate response, in some cases with an error code. Examples include the
functional calls AF_MsgAlloc() and NlmeGetRequest().

Asynchronous calls start a process that may take seconds to complete; for example, AF_DataRequest()
sends a packet over the air to another node in the ZigBee network. Asynchronous calls have a callback
“confirm” function.

Users may customize BeeStack using the parameters and options in the files listed in Table 3-1.

For more information on the user-configurable options in BeeStack, refer to Chapter 11,
“User-Configurable BeeStack Options”.

NOTE
The tables that follow are informational only. BeeKit sets all the
configurable parameters, and no further user intervention is required.

Table 3-2 lists files that describe the BeeStack APIs. BeeStack includes both mandatory and optional files.

Table 3-1. BeeStack User-Configurable Files

File Name Description

ApplicationConf.h Contains the main configuration values (PAN ID, Channel)

BeeStackConfiguration.h Sets BeeStack table sizes and some compile time BeeStack parameters

Task Scheduler

ZDO
Tasks

Application
Tasks APS Tasks NWK Tasks

BeeStack Features

BeeStack™ Software Reference Manual, Rev. 1.0

Freescale Semiconductor 3-3

The BeeStack source files listed in Table 3-3 must be included in the application project workspace.

Table 3-2. BeeStack APIs

Include File Name Description

ApplicationConf.h General application configuration options (PAN ID, channel)

BeeStackConfiguration.h ZDP and stack level configuration options

AppToAfInterface.h Prototypes for AF layer calls, including sending and receiving messages over the air

ASL_ZdpInterface.h Prototypes and types for interacting with ZDP (over-the-air) API

ASL_UserInterface.h Prototypes and types for interacting with common app UI (App Support Layer) API

BeeStackInterface.h Prototypes for interacting with information bases (AIB, NIB)

BeeAppInit.h Minimal application API (for use without ASL UI)

Table 3-3. Required BeeStack Source Files

Function Description

AppStackImpl.c This source file implements the Channel and PAN ID selection logic.

BeeStackInit.c This file implements BeeStack initialization.

BeeStackUtil.c This file contains the implementation of the functions used to save and restore information from the non
volatile memory.

ZbAppInterface.c This file contains the functions and declarations used to register the endpoints 0 and 255 for both
compile time and run time registration. It is also used to register the application endpoints at compile
time.

BeeStack Features

BeeStack™ Software Reference Manual, Rev. 1.0

3-4 Freescale Semiconductor

3.3 Source Files – Directory Structure
BeeStack files use the following extensions:

• Source code: .c, .h
• Libraries: .lib
• S19 record format targets: .s19
• Memory maps: .map

Figure 3-2 shows the directory structure used for the application libraries and source files.

Figure 3-2. Library and Application File Directories

BeeStack Features

BeeStack™ Software Reference Manual, Rev. 1.0

Freescale Semiconductor 3-5

3.4 Miscellaneous Source Files
This section describes the source files in BeeStack which are not already described elsewhere.

Table 3-4. Required BeeStack Source Files

File Description

BeeStack_Globals.c Contains the globals that interface with the other layers (APS, ZDO, NWK). For example, this file
defines the size of the routing table and contains the routing table array.

BeeStack_Globals.h This file contains prototypes and types for BeeStack_Globals.c.

BeeStackParameters.h This file contains the type beeStackParameters_t, which contains binding and security information.

CSkipCalc.c This file contains Macros that will calculate CSkip values for a given set of max_children, max_depth
and max_routers. It does not error check, so the values must be in range to result in less than 0xfff0
nodes in the network.

ZbAppInterface.c Contains endpoint 0 description used by ZDP.

ZbAppInterface.h Header for ZbAppInterface.c.

BeeStack Features

BeeStack™ Software Reference Manual, Rev. 1.0

3-6 Freescale Semiconductor

BeeStack™ Software Reference Manual, Rev. 1.0

Freescale Semiconductor 4-1

Chapter 4
Application Framework
The BeeStack application framework (AF) defines the environment in which ZigBee devices host
application objects. Inside the application framework, application objects send and receive data through
the service access point (SAP) handlers. For example, the application sub-layer data entity service access
point (APSDE-SAP) controls data services between the application objects and the APS layer.

Layers in BeeStack communicate with each other by passing messages through SAP handler functions.
Communication with a next higher or lower layer involves two SAP handler functions. Effectively, one
SAP handler deals with messages from a layer to its next higher layer, and a second SAP handler manages
the messages from the next higher layer back to the lower layer.

Figure 4-1. BeeStack Layers and Application Framework

The APSDE-SAP data services include the request, confirm, response and indication primitives for data
transfer.

• A request primitive transfers information between peer application object entities
• A confirm primitive reports the results of a request function call
• A response primitive returns errors, acknowledgements, or other information

A p p l ic a t i o n
O b je c t

2 4 0

Se
cu

rit
y

Se
rv

ic
e

P
ro

vi
de

r

M A C (I E E E 8 0 2 . 1 5 . 4)

N e t w o r k L a y e r
N W K

A p p l i c a t i o n S u p p o r t
S u b - l a y e r

A P S

A p p l ic a t i o n
O b je c t

1

A p p l ic a t i o n F r a m e w o r k (A F)
Z i g b e e
D e v i c e
O b j e c t
(Z D O)

ZD
O

M
anagem

entP
lane

P h y s ic a l (P H Y) L a y e r

A
pp

lic
at

io
n

La
ye

r

N L D E - S A P N L M E - S A P

N
LM

E-SAP
APSM

E-SAP

M L M E - S A PM L D E - S A P

P D - S A P P L M E - S A P

A P S D E - S A P
E n d P o in t 0E n d p o in t 1

A P S D E - S A P
E n d p o in t 2 4 0
A P S D E - S A P

Application Framework

BeeStack™ Software Reference Manual, Rev. 1.0

4-2 Freescale Semiconductor

• An indication primitive communicates the transfer of data from the APS to the destination
application object entity

Up to 240 distinct application objects can be defined, with each interface on an endpoint indexed from 1
to 240. ZigBee defines two additional endpoints for APSDE-SAP use:

• Endpoint 0 for the data interface to the ZDO
• Endpoint 255 for the data interface function to broadcast data to all application objects

Endpoints 241-254 are reserved for future use.

Through the ZigBee device objects (ZDO) public interfaces, the application objects provide:
• Control and management of the protocol layers in a ZigBee device
• Initiation of standard network functions

In BeeStack, applications never call on SAP handlers directly, but instead use a set of service functions.
The AF service functions are described below.

4.1 AF Types
BeeStack AF types described in Table 4-1 constitute a partial list.

Table 4-1. Application Framework Types and Definitions

Type Description

afAddrInfo_t Provides complete address information for AF_DataRequest()

afDefaultRadius_c Defines default number of hops a message takes to reach a destination address

afDeviceDef_t Defines device type

zbEndPoint_t Defines an endpoint

zbStatus_t Return value (status) of a function or service

zbIeeeAddr_t Long address. Also used for extended PAN ID.

zbPanId_t Identifies a single ZigBee network (part of IEEE 802.15.4)

zbNwkAddr_t Short address. All ZigBee data packets use the short address.

zbClusterId_t APS-level data. Determines both ZDO and application commands.

zbGroupId_t APS-level group addressing

zbProfileId_t Cluster IDs defined within a profile

zbDeviceId_t Device IDs defined within a profile

zbSceneId_t Defines the cluster ID for a programmed scheme (scene)

zbAddrMode_t Defines addressing mode

Application Framework

BeeStack™ Software Reference Manual, Rev. 1.0

Freescale Semiconductor 4-3

4.2 Endpoint Management
An application must register its endpoint with BeeStack before it can communicate with other devices.
Applications on the endpoints of other devices on the network find objects to communicate with using this
information. BeeStack application profiles use endpoints as application identifiers within a ZigBee device.

4.2.1 Simple Descriptor
The simple descriptor contains the description of an endpoint. Every endPointDesc_t structure points to a
simple descriptor structure.

The simple descriptor structure provides information to BeeStack about an endpoint. BeeStack uses this
declaration syntax for the zbSimpleDescriptor_t, defined in BeeStack_Globals.h:

typedef struct zbZbSimpleDescriptor_tag
{

 /*End point ID */
 zbEndPoint_t endPoint;
 /*Application Profile ID*/
 zbProfileId_t aAppProfId;
 /*Appliacation Device ID*/
 zbDeviceId_t aAppDeviceId;
 /*Application Device Version And APS Flag*/
 uint8_t appDevVerAndFlag;
 /*Number of Input Cluster ID Supported by the End Point*/
 zbCounter_t appNumInClusters;
 /*Place Holder for the list of Input Cluster ID*/
 uint8_t *pAppInClusterList;
 /*Number of Output Cluster ID Supported by the End Point*/
 zbCounter_t appNumOutClusters;
 /*Place Holder for the list of Output Cluster ID*/
 uint8_t *pAppOutClusterList;

}zbZbSimpleDescriptor_t;

4.2.2 Register Endpoint
Endpoints must register on the network before they can communicate with other devices.
AF_RegisterEndPoint() allows the application to receive data indications and confirms.

BeeStack endpoint registration uses two function types, the endpoint descriptor, endPointDesc_t, and
the simple descriptor, zbSimpleDescriptor_t.

This is generally accomplished in the BeeAppInit() function.

Prototype
zbStatus_t AF_RegisterEndPoint(const endPointDesc_t * pEndPoint);

Application Framework

BeeStack™ Software Reference Manual, Rev. 1.0

4-4 Freescale Semiconductor

4.2.3 De-register Endpoint
An endpoint de-registers, or removes itself from the network, with the function
AF_DeRegisterEndPoint().

Prototype
zbStatus_t AF_DeRegisterEndPoint(zbEndPoint_t endPoint);

4.2.4 Get Endpoint
An endpoint is an ID number (1-240) that refers to a single object or widget in a node. Using the endpoint,
the ZigBee defined Simple Descriptor can be retrieved (see section 4.2.5) which describes the input and
output clusters and other parameters.

In addition the BeeStack defined Device Definition can be retrieved, which contains ZigBee Cluster
Library information, including the instantiation of an endpoint's data. If a node contained two
OnOffLights, then each light could be controlled independently on two separate endpoints, and the Device
Definition for that endpoint would refer to those two sets of data.

The function AF_GetEndPointDevice() retries the Device Definition from an endpoint.

Prototype
afDeviceDef_t *AF_GetEndPointDevice(zbEndPoint_t endPoint);

4.2.5 Find Endpoint Descriptor
AF_FindEndPointDescriptor() allows an application (or the stack) to convert from an endpoint
number (1-240) to a SimpleDescriptor, as described by the ZigBee specification. This helper function
looks up information contained in the simple descriptor, such as the application profile ID, application
version, or in and out clusters. See the definition of Simple Descriptor for more details.

This function AF_FindEndPointDescriptor searches for the endpoint simple descriptor based on the
endpoint ID (0x00-0xf0).

Prototype
zbSimpleDescriptor_t* AF_FindEndPointDesc(uint8_t endPoint);

Returns
• Pointer to the simple descriptor
• NULL, if not a registered endpoint

Application Framework

BeeStack™ Software Reference Manual, Rev. 1.0

Freescale Semiconductor 4-5

4.3 Message Allocation
AF_MsgAlloc() allows an application to allocate a message for building a larger packet to be sent using
AF_DataRequestNoCopy(). Normally, the command AF_DataRequest()only copies the payload.
The use of the AF_MsgAlloc() and AF_DataRequestNoCopy() allows an over-the-air message to be
built in-place, saving some RAM.

BeeStack uses a pool of messages to prevent heap fragmentation used on some other ZigBee
implementation. Each message is of fixed size in an array. Over-the-air messages are called "big buffers".
There is a limited number of these buffers available (generally 5 or 6, depending on node type). See
gTotalBigMsgs_d in AppToMacPhyConfig.h to set the number of big buffers. The Freescale MAC
documentation contains more details on the message buffer system.

Prototype
void * AF_MsgAlloc(uint8_t payloadLen);

Returns
• MSG_Alloc(gMaxRxTxDataLength_c);

4.4 AF Data Requests
Application Framework (AF) data requests are the primary way applications send data over the air to one
or more other nodes in a ZigBee network.

There are two functions for sending data, one that copies the application’s data payload,
AF_DataRequest(), and one that leaves the payload in place, AF_DataRequestNoCopy().

Data requests are asynchronous calls. They may take several seconds to process if they need to wait for a
response from another node in the network, allow for retries, or make multiple hops. For example, if using
APS ACKs (application-level end-to-end acknowledgement), it will take up to 4.5 seconds to indicate
failure to deliver the packet on the data confirm.

AF_DataRequest() sends a message to the APS layer, which sends the packet to the NWK layer, the
MAC and eventually out the radio.
zbStatus_t AF_DataRequest(afAddrInfo_t *pAddrInfo, uint8_t payloadLen, void *pPayload,
zbApsCounter_t *pConfirmId);

Because the payload is copied in AF_DataRequest(), the payload may be a local variable on the C stack,
or a global or any other data location.

For each AF_DataRequest(), there is exactly one data confirm. The data confirm comes back to the
application in the function BeeAppDataConfirm(). See the file BeeApp.c in any project.

Confirms may come in a different order than they were sent, due to retries and delivery times of the packet
across the network. For example, if an application sends out 2 data requests one after the other, and the
first one needs to retry due to noise on the channel and the second one does not, the confirm will come in
for the second AF_DataRequest() before the confirm for the first AF_DataRequest().

Application Framework

BeeStack™ Software Reference Manual, Rev. 1.0

4-6 Freescale Semiconductor

The easiest (and recommended) method is for an application to only send out one AF_DataRequest()
at a time, and wait until the confirm before sending out another data request.

Alternately, an application can keep track of the confirm ID by providing a pointer to the
AF_DataRequest() in the pConfirmId parameter, to match the confirm IDs coming into
BeeAppDataConfirm(). The pConfirmId parameter can be NULL if using the one-at-a-time method.

Sometimes an application needs to send many bytes of data as a payload on a given packet. In this case,
the AF framework provides a no-copy interface for data requests. A general rule of thumb is to use the
AF_DataRequestNoCopy() for payloads of more than 32 bytes, or variable length payloads that could be
more than 32 bytes. The prototype for the no-copy data request is as follows:
zbStatus_t AF_DataRequestNoCopy(afAddrInfo_t *pAddrInfo, uint8_t payloadLen,
afToApsdeMessage_t *pMsg, zbApsCounter_t *pConfirmId);

Instead of the pPayload parameter there is a pMsg parameter. This message buffer is of the type used to
send to SAP handlers directly. Because of this, special care must be taken, as a message buffer leak could
cause the node to stop sending/receiving data (as it could run out of message buffers).

To allocate a message buffer, use the function
void *AF_MsgAlloc(void);

For example:

void SendMaxPacket(afAddrInfo_t *pAddrInfo)
{

afToApsdeMessage_t *pMsg;
uint8_t *pPayload
uint8_t maxLen;

pMsg = AF_MsgAlloc();
pPayload = AF_Payload(pMsg);
maxLen = AF_MaxPayloadLen();

/* fill entire payload with 0x33 */
FLib_MemSet(pPayload, 0x33, maxLen);
AF_DataRequestNoCopy(pAddrInfo, maxLen, pMsg, NULL);

}

The lower layers (APS, NWK or MAC) will free the message buffer allocated for data requests.

For both AF_DataRequest() and AF_DataRequestNoCopy(), The afAddrInfo_t structure is used to
define the destination of the packet. The structure is as follows:
typedef struct afAddrInfo_tag
{

zbAddrMode_tdstAddrMode;/* ind, group, 16, 64 */
zbApsAddr_tdstAddr;/* short, long or group */
zbEndPoint_tdstEndPoint;/* destination endpoint */
zbClusterId_taClusterId;/* cluster to send */
zbEndPoint_tsrcEndPoint;/* source endpoint */
zbApsTxOption_t txOptions;/* ACK */
uint8_t radiusCounter;/* radius */

} afAddrInfo_t;

Application Framework

BeeStack™ Software Reference Manual, Rev. 1.0

Freescale Semiconductor 4-7

Once a node is on a network, it can communicate to any other node on the network. There is no need for
binding or setting up groups. All the sending node needs is the 16-bit short address of the receiving node.

The destination address mode (dstAddrMode) affects the rest of the destination fields; it may be one of the
following:

• gZbAddrModeIndirect_c — ignores dstAddr and dstEndPoint because the destination is found in
the local binding table based on the srcEndPoint field.

• gZbAddrModeGroup_c — ignores dstEndPoint because that is always the broadcast endpoint
(0xff) on groups. dstAddr is a 16-bit group address.

• gZbAddrMode16Bit_c — uses both dstEndPoint and a 16-bit dstAddr.
• gZbAddrMode64Bit_c — uses dstEndPoint and a 64-bit dstAddr. Note that the 64-bit address is

converted locally to a 16-bit address before being sent out the radio. ZigBee always uses 16-bit
addresses, even though IEEE 802.15.4 can use 16-bit or 64-bit addresses in its messages. Make
sure to call ASL_NWK_addr_req() for the destination node before using 64-bit address mode.

The local binding table is set up through local or remote binding commands. Local binding commands use
APS functions such as APSME_BindRequest(). Remote binding commands use ZDP functions such as
ASL_EndDeviceBindRequest(). Groups are set up locally in a node using APS functions such as
APSME_AddGroupRequest() or remotely in other nodes using ZigBee Cluster Library (ZCL) functions.

The 16-bit destination address may be the address of the node or one of the following broadcast addresses:
• gaBroadcastAddress – broadcast to all nodes
• gaBroadcastZCnZR – broadcast only to routers (no end devices)
• gaBroadcastRxOnIdle – broadcast to all constantly-awake (RxOnIdle) devices

The cluster ID is up to the application. BeeStack puts no restrictions on clusters. There is a structure in
EndPointConfig.c called zbSimpleDescriptor_t. This structure, the simple descriptor, is used for
over-the-air discovery of services, but it is not used for cluster filtering.

The source endpoint must be a registered endpoint. See AF_RegisterEndPoint() and the BeeAppInit()
function.

The txOptions allow a few transmit options including
• gApsTxOptionNone_c — use no TxOptions.
• gApsTxOptionSecEnabled_c — Enable security on this packet (requires security to be selected in

BeeKit).
• gApsTxOptionAckTx_c — Enable acknowledgements and reliable transmission. By default, the

data confirm indicates the data was sent. With ACK turned on, the data confirm indicates whether
the receiving node received the packet. ACKs cause more network traffic.

• gApsTxOptionSuppressRouteDiscovery_c — Normally, packets discover a route if needed. Turn
off route discovery to route along the tree.

• gApsTxOptionForceRouteDiscovery_c — Normally, packets discover a route if needed. Turn on
force route discovery to discover a route before sending the packet.

Application Framework

BeeStack™ Software Reference Manual, Rev. 1.0

4-8 Freescale Semiconductor

The radius field tells ZigBee how far to send the packet before expiring the packet. Set this parameter to
0 to use the default of afDefaultRadius_c, which is twice network depth, or 10 in the Home Controls Stack
Profile 0x01.

4.5 AF Data Indications
When an AF_DataRequest() sent by one node is received by another node, the results come into the
receiving node in the function BeeAppDataIndication() in the file BeeApp.c. The function typically
looks as follows:
void BeeAppDataIndication(void)
{
 apsdeToAfMessage_t *pMsg;
 zbApsdeDataIndication_t *pIndication;
 zbStatus_t status = gZclMfgSpecific_c;

 while(MSG_Pending(&gAppDataIndicationQueue))
 {
 /* Get a message from a queue */
 pMsg = MSG_DeQueue(&gAppDataIndicationQueue);

 /* give ZCL first crack at the frame */
 pIndication = &(pMsg->msgData.dataIndication);
 status = ZCL_InterpretFrame(pIndication);

 /* not handled by ZCL interface ... */
 if(status == gZclMfgSpecific_c)
 {
 /* insert manufacturer specific code here... */
 }

 /* Free memory allocated by data indication */
 MSG_Free(pMsg);
 }
}

NOTE
It is up to the application to free the message buffer. BeeStack is designed
this way so the application can keep the message for awhile if it needs to do
further processing on the message that may take time and the application
wishes to relinquish control to other tasks meanwhile. Be very careful to
free message buffers. If the message buffers are not freed, the system may
run out, which would prevent further ZigBee communication.

In the above example, the ZigBee Cluster Library (ZCL) is used to interpret the frame, possibly getting or
setting attributes, etc. Private profiles that do not use ZCL can interpret the pIndication directly, which
contains all the information the application needs to understand the incoming frame.

The pIndication structure is as follows:
typedef struct zbApsdeDataIndication_tag
{

zbAddrMode_tdstAddrMode; /* address mode */
zbNwkAddr_taDstAddr; /* dest addr or group */

Application Framework

BeeStack™ Software Reference Manual, Rev. 1.0

Freescale Semiconductor 4-9

zbEndPoint_tdstEndPoint; /* dest endpoint */
zbAddrMode_tsrcAddrMode; /* always 16-bit */
zbNwkAddr_taSrcAddr; /* src addr or group */
zbEndPoint_tsrcEndPoint; /* source endpoint */
zbProfileId_taProfileId; /* profile ID */
zbClusterId_taClusterId; /* cluster ID */
uint8_t asduLength; /* length of payload */
uint8_t *pAsdu; /* pointer to payload */
bool_t fWasBroadcast; /* was broadcast? */
zbApsSecurityStatus_t fSecurityStatus; /* secured? */
uint8_t linkQuality; /* link quality */

} zbApsdeDataIndication_t;

An application can tell whether the packet was broadcast or sent directly, whether the packet was secured
or not, what the link quality was on that particular packet and whether the packet was sent to a group or
unicast to this individual node.

The lower layers will have already filtered packets that do not match the node criteria, do not match the
profile ID of the receiving endpoint, and do not match the group (if any) on that endpoint. The lower layers
also filter out duplicates so the application does not need any logic to handle duplicates packets.

The application is responsible for filtering based on clusters.

Make sure that the each endpoint to receive data is registered, using AF_RegisterEndpoint(). This is
generally done in the BeeAppInit() function.

There is no attribute in the data indication. Attributes are a ZigBee Cluster Library concept and are not
used in private profiles.

Application Framework

BeeStack™ Software Reference Manual, Rev. 1.0

4-10 Freescale Semiconductor

BeeStack™ Software Reference Manual, Rev. 1.0

Freescale Semiconductor 5-1

Chapter 5
Application Support Sub-layer
The application support sub-layer (APS) provides the interface between the NWK layer and the
application layer.

The BeeStack application support sub-layer (APS) roles include:
• Maintaining tables for binding, or matching two devices together based on their services and their

needs
• Forwarding messages between bound devices
• Group address definition, removal and filtering of group addressed messages
• Mapping between 64-bit IEEE addresses and 16-bit NWK addresses
• Reliable data transport

Figure 5-1. BeeStack Application Support Sub-Layer Elements

A general set of services supports communication with ZigBee device objects (ZDO) and the
manufacturer-defined application objects. The APS interface to the next higher and next lower layers
utilizes two entities: the data (service) entity and the management (service) entity.

• The APS data entity (APSDE) provides over-the-air data transmission service via its service access
point (SAP), the APSDE-SAP

A p p l i c a t i o n
O b je c t

2 4 0

S
ec

ur
ity

S
er

vi
ce

P
ro

vi
de

r

M A C (I E E E 8 0 2 . 1 5 . 4)

N e t w o r k L a y e r
N W K

A p p l i c a t i o n S u p p o r t
S u b - l a y e r

A P S

A p p l ic a t i o n
O b je c t

1

A p p l i c a t i o n F r a m e w o r k (A F)
Z i g b e e
D e v i c e
O b j e c t
(Z D O)

ZD
O

M
anagem

entP
lane

P h y s i c a l (P H Y) L a y e r

A
pp

lic
at

io
n

La
ye

r

E n d p o i n t 2 4 0
A P S D E - S A P

E n d p o i n t 1
A P S D E - S A P

N
LM

E-SAP

M L D E - S A P M L M E - S A P

P D - S A P P L M E - S A P

APSM
E-SAP

A P S D E - S A P
E n d P o i n t 0

N L M E - S A PN L D E - S A P

Application Support Sub-layer

BeeStack™ Software Reference Manual, Rev. 1.0

5-2 Freescale Semiconductor

• The APS management entity (APSME) provides management service with its APSME-SAP and
maintains a database of managed objects known as the APS information base (AIB)

5.1 Direct and Indirect Data Addressing
Direct addressing requires either the short or extended (also called long, MAC or IEEE) address of the
target or destination device. The APS layer maintains the short address and its corresponding extended
address in the AIB.

While network addresses depend on the network topology and the device’s network association, the
extended address is unique to the device, and does not change with the network topology.

With indirect addressing, a device sends the data without a destination address, which must be looked up
in a binding table. The binding table can be on the device generating the message, or it can be on the ZC.
If it is the latter, the message must go to the ZC for destination lookup and retransmission to the destination
device or devices.

5.2 APS Layer Interface
In the APS layer, the APSME primitives affect the local node only, and they use internal (not ZigBee)
formats for many parameters.

Use the ZDP versions of these functions when communicating to other nodes, or when using ZigBee
standard over-the-air formats. The ASPDE functions affect the over-the-air (OTA) data.

The macros in this section use the given attributeId to call the appropriate macro.

5.2.1 Get Request
This macro retrieves values (attributes) from the APS information base (AIB).
#define ApsmeGetRequest(attributeId, pValue) \ ApsmeGetRequest_##attributeId(pValue)

Declaration syntax:
typedef struct apsmeGetReq_tag{

uint8_t aibAttribute;
uint8_t *pAibAttributeValue;

}apsmeGetReq_t;

The following attributes may be retrieved using ApsmeGetRequest():
gApsTrustCenterAddress_c Usually 0x0000 (ZC)
gApsSecurityTimeOutPeriod_c Timeout for authentication

The following Attributes may be retrieved using ApsmeGetRequestTableEntry():
gApsAddressMap_c Retrieve an entry from the address map
gApsBindingTable_c Retrieve an entry from the binding table
gApsGroupTable_c Retrieve an entry from the group table

Application Support Sub-layer

BeeStack™ Software Reference Manual, Rev. 1.0

Freescale Semiconductor 5-3

The ApsmeGetRequestTableEntry() macro is used when the entry is not a single item, but an array of
items. It is prototyped as follows:
void * ApsmeGetTableEntry(uint8_t attributeId, uint8_t index);

The return is one item in the table. Care must be taken not to read past the end of the table. The index
should be 0 - (n-1), where n is the number of elements in the table. Use gMaxAddressMapEntries,
gMaxBindingEntries, and giMaxGroups respectively. Note that the tables are in BeeStack internal form.
Use the ZDP Mgmt functions to retrieve the entries in ZigBee over-the-air form. The types for the returned
entry are:

• apsBindingTable_t
• zbAddressMap_t
• zbGroupTable_t

5.2.2 Set Request
ZDO uses this macro to set a simple attribute in the AIB.
#define ApsmeSetRequest(attributeId, pValue)
ApsmeSetRequest_##attributeId(pValue

Use ApsmeGetRequestTableEntry() for table entries. This function is prototyped as:
void ApsmeSetRequestTableEntry
(
 uint8_t attributeId,
 uint8_t index,
 void *pValue
);

5.2.3 Get Table Entry
This macro requests an entry from an AIB table attribute (for example, an address map).
#define ApsmeGetRequestTableEntry(attributeId,index) \ ApsmeGetRequest_##attributeId(index)

5.2.4 Set Table Entry
This macro attempts to set an entry in an AIB table.
#define ApsmeSetRequestTableEntry(attributeId,index,pValue) \
ApsmeSetRequest_##attributeId(index,pValue)

5.2.5 Add to Address Map
This function, APS_AddToAddressMap , seeks to add a device’s IEEE address to the network address
table.
addrMapIndex_t APS_AddToAddressMap(zbIeeeAddr_t aExtAddr, zbNwkAddr_t aNwkAddr);

The index returned is either 0 - (gMaxAddressMapEntries-1), or gAddressMapFull_c to indicate it
couldn't be added because the table is full. The address map associates a 16-bit NWK address with a 64-bit
IEEE address, and is updated automatically with end-device-anounce.

Application Support Sub-layer

BeeStack™ Software Reference Manual, Rev. 1.0

5-4 Freescale Semiconductor

5.2.6 Remove from Address Map
The function APS_RemoveFromAddressMap() removes from the address map an entry found by its IEEE
address. It does not return a status, and will do nothing if the address is not already in the address map. The
only parameter is an IEEE address to remove.

Prototype
void APS_RemoveFromAddressMap(zbIeeeAddr_t aExtAddr);

5.2.7 Find IEEE Address in Address Map
The function APS_FindIeeeInAddressMap() initiates a search through the address map for the IEEE
address.

Prototype
addrMapIndex_t APS_FindIeeeInAddressMap(zbIeeeAddr_t aExtAddr);Returns

Returns
• Index into that item, if found
• gNotInAddressMap_c, if not found

5.2.8 Get NWK Address from IEEE Address
The function APS_GetNwkAddress requests the network address based on a device’s IEEE address.

Prototype
uint8_t* APS_GetNwkAddress(uint8_t * pExtAddr);

Returns
• Pointer to the NWK (short) address, given an IEEE (long) address
• NULL, if not self or in address map

5.2.9 Get IEEE Address from NWK Address
The function APS_GetIeeeAddress requests the IEEE address based on known NWK address.

Prototype
uint8_t *APS_GetIeeeAddress(uint8_t *pNwkAddr);

Returns
• Pointer to the IEEE (long) address, given a NWK (short) address
• NULL, if not self or in address map

Application Support Sub-layer

BeeStack™ Software Reference Manual, Rev. 1.0

Freescale Semiconductor 5-5

5.3 Binding
Binding creates logical links between application devices and endpoints to allow them to work together to
perform specific tasks. Binding maintains information on each logical link in a binding table. Each source
node maintains its own binding table, or the ZC maintains the binding table for the network.

Binding is not necessary for ZigBee communication. Group or direct mode can be used instead. However,
binding can be useful because binding tables are automatically updated if an end-device node moves to a
new parent in the network. Binding also allows the destination address/endpoint information to be set up
by a commissioning tool.

ZDO issues a primitive to the APS layer to initiate the binding operation on a device that supports a binding
table. This in-memory association has no over-the-air behavior.

5.3.1 Bind Request
The function APSME_BindRequest initiates the unidirectional bind request. This is a synchronous call.

Prototype
zbStatus_t APSME_BindRequest(zbApsmeBindReq_t* pBindReq);

Returns
• gZbSuccess_t if binding worked
• gZbIllegalDevice_t if the short or long address is not valid
• gZbIllegalRequest_t if the device is not on a network
• gZbTableFull_t if the table is full
• gZbNotSupported_t if binding is not supported

5.3.2 Unbind Request
This function APS_UnbindRequest unbinds, or breaks the logical link between devices. This is an
in-memory association only, with no over-the-air behavior.

Prototype
zbStatus_t APSME_UnbindRequest(zbApsmeBindReq_t* pBindReq);

 Returns
• gZbSuccess_t if it worked
• gZbIllegalDevice_t if the short or long address is not valid
• gZbIllegalRequest_t if the device is not on a network
• gZbTableFull_t if the table is full
• gZbNotSupported_t if binding is not supported

Application Support Sub-layer

BeeStack™ Software Reference Manual, Rev. 1.0

5-6 Freescale Semiconductor

5.3.3 Find Binding Entry
The function APS_FindBindingEntry looks through the binding table for the entry described by
*pBindEntry. The cluster for this helper function is ignored for matching.

Prototype
bindIndex_t APS_FindBindingEntry(zbApsmeBindEntry_t* pBindEntry);

Returns
• Index into binding table if entry exists
• gApsNotInBindingTable_c if not found

5.3.4 Find Next Binding Entry
The function APS_FindNextBindingEntry is used internally by the APSDE-DATA.request primitive.
This function requests the next binding entry based on the source endpoint, and start index.

Prototype
bindIndex_t APS_FindNextBindingEntry(bindIndex_t iStartIndex, zbEndPoint_t srcEndPoint,
zbIeeeAddr_t aExtAddr);

Returns
• Index to the binding entry
• gApsNotInBindingTable_c if not found

5.3.5 Clear Binding Table
The APS_ClearBindingTable function call clears every entry in the binding table.

Prototype
void APS_ClearBindingTable(void);

The function call returns no value.

Application Support Sub-layer

BeeStack™ Software Reference Manual, Rev. 1.0

Freescale Semiconductor 5-7

5.3.6 Add Group Request
Nodes may have multiple endpoints. Before adding an endpoint to a group, the endpoint must be a
registered endpoint on its node. Note that the endpoint is an endpoint number (1-240), not an index into
the endpoint array (0-n).

The function APSME_AddGroupRequest adds an endpoint to a specified group.

Prototype
zbStatus_t APSME_AddGroupRequest(zbApsmeAddGroupReq_t *pRequest);

Returns
• gZbSuccess_c, if it worked
• gZbTableFull_c, if the group table is full

For more information, see APSME-ADD-GROUP.request in the ZigBee Specifications, r13.

5.3.7 Remove Group Request
Remove the endpoint from the group using APSME_RemoveGroupRequest.

Prototype
zbStatus_t APSME_RemoveGroupRequest(zbApsmeRemoveGroupReq_t *pRequest);

Returns
• gZbSuccess_c, if removal succeeded
• gZbNoMatch_c, if group invalid or endpoint not part of group

See APSME-REMOVE-GROUP.request in Section 2.2.4.5.3, ZigBee Specifications, r13.

5.3.8 Remove Endpoint from All Groups Request
Remove a given endpoint from all groups with APSME_RemoveAllGroupsRequest.

Prototype
zbStatus_t APSME_RemoveAllGroupsRequest(zbApsmeRemoveAllGroupsReq_t *pRequest);

Returns
• gZbSuccess_c, if removal succeeded
• gZbInvalidEndpoint_c, if removal failed

NOTE
To remove all groups, call ApsGroupReset().

For more information, see APSME-REMOVE-ALL-GROUPS.request in the ZigBee Specifications, r13.

Application Support Sub-layer

BeeStack™ Software Reference Manual, Rev. 1.0

5-8 Freescale Semiconductor

5.3.9 Identify Endpoint Group Membership
This internal function confirms that the endpoint is a member of a specified group.

Prototype
bool_t ApsGroupIsMemberOfEndpoint(zbGroupId_t aGroupId, zbEndPoint_t endPoint);

Returns

It returns TRUE or FALSE.

5.3.10 Group Reset Function
This function resets or removes all groups.

Prototype
void ApsGroupReset(void);

Returns

This function does not return a value.

5.4 AIB Attributes
The attributes shown in Table 5-1 manage the APS layer in BeeStack.

Table 5-1. APS Information Base Attributes

Attribute ID Type Range Description Default

apsAddressMap 0xc0 Set Variable Current set of 64 bit IEEE to 16 bit NWK address maps Null set

apsBindingTable 0xc1 Set Variable Current set of binding table entries in the device Null set

apsGroupTable 0x0c2 Set Variable Current set of group table entries Null set

BeeStack™ Software Reference Manual, Rev. 1.0

Freescale Semiconductor 6-1

Chapter 6
ZigBee Device Objects
ZigBee device objects (ZDO) provide an interface between the application objects, the device profile, and
the APS layer. As part of the application layer, ZDO meets common requirements of all applications
operating in BeeStack.

ZDO responsibilities include:
• Initializing the APS and NWK layers and the Security Service Provider (SSP).
• Assembling configuration information from the end applications to determine and implement

discovery, security management, network management, and binding management.

The ZDO interface utilizes the APSDE-SAP for data and the APSME-SAP for control messages.

ZDO presents public interfaces to the application objects in the AF layer for control of device and network
functions by the application objects. ZDO communicates with the lower portions of the ZigBee protocol
stack on endpoint 0.

Figure 6-1. ZigBee Device Objects in BeeStack

A p p l i c a t io n
O b je c t

2 4 0

S
ec

ur
ity

S
er

vi
ce

P
ro

vi
de

r

M A C (I E E E 8 0 2 . 1 5 . 4)

N e t w o r k L a y e r
N W K

A p p l i c a t i o n S u p p o r t
S u b - l a y e r

A P S

A p p l i c a t io n
O b je c t

1

A p p l ic a t io n F r a m e w o r k (A F)
Z i g b e e
D e v i c e
O b j e c t
(Z D O)

ZD
O

M
anagem

entP
lane

APSM
E-S

AP

N L D E - S A P N L M E - S A P

N
LM

E-SAP

M L M E - S A PM L D E - S A P

P h y s ic a l (P H Y) L a y e r

A
pp

lic
at

io
n

La
ye

r

P L M E - S A PP D - S A P

A P S D E - S A P
E n d P o i n t 0E n d p o i n t 1

A P S D E - S A P
E n d p o i n t 2 4 0
A P S D E - S A P

ZigBee Device Objects

BeeStack™ Software Reference Manual, Rev. 1.0

6-2 Freescale Semiconductor

6.1 ZDO State Machine
The ZDO state machine process is automated. The descriptions provided here clarify the behavior of the
devices. Most important are these general macros and functions for starting and stopping the state
machine.

If the non volatile memory (NVM) module is enabled, some of the data gathered for the device
configuration is stored in NVM. In order to recover the information following a device reset, use the ZDO
macro ZDO_StartWithNWM.

For more information, see the comments included in the ZdoStateMachineHandler.c file.

6.2 General ZDO Interfaces
This section includes the general ZDO macros and functions to all devices, regardless of their role (ZC,
ZR, or ZED).

6.2.1 Get State Machine
This macro retrieves the current state of the ZDO machine. The states for ZDO are defined in ZdoCommon.h.
Generally, this function is not needed since the change in ZDO state is reported to ASL through the use of
ASL_ZdoCallBack(). If not using ASL, the application can register to receive ZDO state change
information using Zdp_AppRegisterCallBack().

Macro
#define ZDO_GetState()(gZDOState)

The following states for ZDO are defined in BeeStack (internal use only states are not shown):
gZdoDiscRetryState Retrying network discovery
gZdoReadyState_c ZDO ready, and stopped.
gZdoDiscInProgressState_c Network discovery in progress
gZdoFormationState_c Network formation in progress
gZdoJoiningInProgressState_c Joining a network
gZdoLeaveInProgressState_c Leaving a network
gZdoIdleState_c Nothing for ZDO to do
gZdoPermitJoin_c Permit joining has changed state
gZdoOrphanJoinState_c Ophan joining
gZdoCoordinatorStartingState_c ZC is starting, but not yet running
gZdoCoordinatorRunningState_c ZC is running
gZdoRouterRunningState_c ZR is running
gZdoEndDeviceRunningState_c ZED is running
gZdoDeviceAuthenticationState_c Device is being authenticated
gZdoStopState_c ZDO has stopped

ZigBee Device Objects

BeeStack™ Software Reference Manual, Rev. 1.0

Freescale Semiconductor 6-3

gKeyTransferState_c Key is being transferred.

6.2.2 Start ZDO State Machine without NVM
The macro ZDO_Start(gStartWithoutNWM_c) initializes the device using the default values.

Macro
#define ZDO_Start(gStartWithOutNvm_c)

6.2.3 Start ZDO State Machine with NVM
Starting the ZDO state machine with NVM recovers all of the values from memory; for example,
neighbors, routes, and other stored information.

Macro
#define ZDO_Start (startMode)

The start mode parameter can be any one of the following:
gStartWithOutNvm_c Allows a device to join the network fresh, without restoring NVM.
gStartAssociationRejoinWithNvm_c Allows a device to rejoin the network with the association

procedure using the PAN information from its memory.
gStartOrphanRejoinWithNvm_c Allows a device to rejoin the network with the orphan procedure

using the information from its memory.
gStartNwkRejoinWithNvm_c Allows a device to rejoin the network at the NWK layer with the

information from its memory using rejoin command.
gStartSilentRejoinWithNvm_c Allows a device to rejoin a network, and restores information from

its memory, without notifying other devices of its return to the
network.

6.2.4 Stop ZDO State Machine
This macro instructs a device to stop its ZDO State machine.

Macro
#define ZDO_Stop()

6.2.5 Stop ZDO and Leave
This macro sends to a device the command to leave the network and then stop its ZDO state machine.

Macro
#define ZDO_Leave()

ZigBee Device Objects

BeeStack™ Software Reference Manual, Rev. 1.0

6-4 Freescale Semiconductor

6.3 Device Specific ZDO Interfaces
These ZDO macros and functions, while specific to the ZC, ZR, or ZC, again are automated, and the
information that follows describes their behavior.

For each device, there are events that are supported only for the specific state. For example, when a ZC is
in running state, it cannot process a start event.

6.3.1 ZC State Machine
The ZC state machine supports several events depending upon its state.

This macro can change its state:
ZDOCoordinatorChangeState(state)

When in any of the following states, there are limited events supported for the coordinator.

6.3.1.1 ZC Initial State
When an application starts, restarts or resets a coordinator, it enters initial machine state and restores any
required information from NVM.

When in initial machine state, the ZC machine state supports these events:
• gStartAssociationRejoinWithNvm_c
• gStartOrphanRejoinWithNvm_c
• gStartNwkRejoinWithNvm_c
• gStartSilentRejoinWithNvm_c

6.3.1.2 ZC Starting State
The ZC enters starting state following initial state, and after restoring any required information from
NVM.

When in starting machine state, the ZC machine state supports:
• gZDO_StartNetworkFormation_c
• gZDO_NetworkFormationSuccess_c
• gZDO_NetworkFormationFailed_c
• gZDO_Timeout_c

6.3.1.3 ZC Running State
In running machine state, the ZC machine state supports:

• gStop_c
• gKeyTransferInitiated_c
• gManagementCommandSent_c
• gChildLeaveSuccess_c

ZigBee Device Objects

BeeStack™ Software Reference Manual, Rev. 1.0

Freescale Semiconductor 6-5

6.3.1.4 ZC Key Transfer state
This machine state supports the following event only with the key transfer initialized.

• gKeyTransferSuccess_c

6.3.1.5 ZC Stop State
A ZC enters stop state when network formation fails or an application tells the device to stop. Additionally,
this clears the stack and NVM.

The ZC stop state supports this event:
• gZdoStopState_c

6.3.1.6 ZC Remote Commands State
The ZC enters the remote command state when the device receives any remote command. A ZC moves to
running state upon receipt of the remote command.

• gZdoRemoteCommandsState_c

6.3.2 ZR State Machine
The router state machine supports several events depending upon its state.

This macro can change its state:
ZDORouterChangeState(state)

The router can be in any of the following states. When in any given state, there are limited events that are
supported.

6.3.2.1 Initial Machine State
When in initial machine state, the ZR machine supports these events:

• gStartWithOutNvm_c
• gStartAssociationRejoinWithNvm_c
• gStartOrphanRejoinWithNvm_c
• gStartNwkRejoinWithNvm_c
• gStartSilentRejoinWithNvm_c

In the case of StartSilentRejoinWithNvm, a device can join the network and restore information from its
memory without notifying other devices of its return to the network

ZigBee Device Objects

BeeStack™ Software Reference Manual, Rev. 1.0

6-6 Freescale Semiconductor

6.3.2.2 Discovery in Progress State
If in discovery-in-progress state, the ZR machine state supports these events:

• gZDO_StartNetworkDiscovery_c
• gZDO_NetworkDiscoverySuccess_c
• gZDO_NetworkDiscoveryFailed_c

6.3.2.3 Joining In Progress State
If in joining-in-progress state, the ZR machine state supports these events:

• gZDO_StartJoiningNetwork_c
• gZDO_StartRouterSuccess_c
• gZDO_JoinFailed_c

6.3.3 ZED Machine State
This macro can change the ZED machine state:
ZDOEnddeviceChangeState(state)

When in any of the following states, there are limited events supported for an end device.

6.3.3.1 ZED Initial State
An application starts, restarts, or resets a ZED, which triggers initial machine state and restores all
information from NVM, if required.

When in initial machine state, the ZED state machine supports these events:
• gStartAssociationRejoinWithNvm_c
• gStartOrphanRejoinWithNvm_c
• gStartNwkRejoinWithNvm_c
• gStartSilentRejoinWithNvm_c

6.3.3.2 ZED Discovery In Progress State
Following initial machine state, a ZED enters discovery-in-progress state and seeks out a parent device so
that it can join the network by the discovery process.

The ZED discovery-in-progress machine state supports the following events:
• gZDO_StartNetworkDiscovery_c
• gZDO_NetworkDiscoverySuccess_c
• gZDO_NetworkDiscoveryFailed_c
• gZDO_TimeoutBetweenScan_c
• gZDO_Timeout_c

ZigBee Device Objects

BeeStack™ Software Reference Manual, Rev. 1.0

Freescale Semiconductor 6-7

6.3.3.3 ZED Joining In Progress State
If the ZED succeeded in discovering a network then it enters a joining-in-progress machine state.

This ZED machine state supports the following events:
• gZDO_StartJoiningNetwork_c
• gZDO_JoinSuccess_c
• gZDO_JoinFailed_c
• gAuthenticationInitiated_c

6.3.3.4 ZED Orphan Join State
A ZED may try to join the network by the orphan scan process after the initial state.

When in this state, the ZED orphan join state supports these events:
• gZDO_StartOrphanJoin_c
• gZDO_JoinSuccess_c
• gZDO_JoinFailed_c
• gZDO_Timeout_c

6.3.3.5 ZED Running State
When a join or authentication (in a secured network) request succeeds, a ZED enters running state.

ZED running state supports these events:
• gStartDevice_c
• gStartNwkRejoinWithNvm_c
• gStop_c
• gAnnceStop_c
• gManagementCommandSent_c

6.3.3.6 ZED Leave-In-Progress State
A ZED enters the leave-in-progress state when it initiates or receives a leave request, or if it receives the
stop request from the application.

ZED leave-in-progress state supports the following events:
• gZDO_DeviceLeftNetwork_c
• gZDO_DeviceLeftNetwork_c
• ZDO_StartLeaving_c

ZigBee Device Objects

BeeStack™ Software Reference Manual, Rev. 1.0

6-8 Freescale Semiconductor

6.3.3.7 ZED Stop State Machine
A ZED enters stop state when discovery, join, or authentication fails, or an application sends a stop request.
Additionally, this clears the stack and NVM.

ZED stop state machine supports the following event:
• gStop_c

6.3.3.8 ZED Authentication State
A ZED enters device authentication state once the connection to a network succeeds with security enabled.
This applies to residential security mode only.

Device authentication state for the ZED supports the following events:
• gZdoDeviceAuthenticationState_c
• gAuthenticationSuccess_c
• gAuthenticationFailure_c
• gZDO_DeviceLeftNetwork_c

6.3.3.9 ZED Remote Command State
A ZED enters the remote command state when the device receives any remote command. The ZED moves
to running state upon receipt of the remote command.

The ZED remote command state supports the following event:
• gZDO_MgmtResponseSent_c

6.4 Selecting PAN ID, Channel and Parent
The choice of PAN ID, channel and parent are all under application control for all BeeStack nodes.

By default, BeeStack uses the following algorithm to select a PAN ID and Channel when forming a
network (ZC only):

• The set of channels is defined by mDefaultValueOfChannel_c
• Of the set of channels, look for the channel with the fewest network
• Of the channels with the fewest networks find the channel with the least noise
• Choose use the MAC address for extended PAN ID if mDefaultNwkExtendedPANID_c is all

0x00s, otherwise use mDefaultNwkExtendedPANID_c for the extended PAN ID
• Choose a random 16-bit PAN ID if mDefaultValueOfPanId_c is 0xff, 0xff, otherwise use

mDefaultValueOfPanId_c
• Do not form the network if the PAN ID (extended or 16-bit) is already in use. Use a random PAN

By default, BeeStack uses the following algorithm to select an appropriate parent and channel when
joining a network (ZC and ZED only):

• The set of channels is defined by mDefaultValueOfChannel_c

ZigBee Device Objects

BeeStack™ Software Reference Manual, Rev. 1.0

Freescale Semiconductor 6-9

• In the set of channels, look for at least one node from each network, up to the limit of gathered
nodes (depends on size of neighbor table)

• If there is more than one node in a given network, chose the one that is highest up the tree with both
capacity and joining enabled. Each router has by default the capacity for 6 router children and 14
end device children

• Choose the first node that meets the above criteria for a parent and request association

These algorithms can be modified by the application, but it takes good knowledge of C programming. The
algorithms are in the file AppStackImpl.c, and use the following functions for channel, PAN and parent
selection:
void SelectLogicalChannel
(
 const nwkMessage_t *pMsg, /* IN – energy detect scan confirm */
 uint8_t* pScanChannels,/* IN - list of channels obtained */
uint8_t* pSelectedLogicalChannel /* IN/OUT- To be updated after

 finding least number of Nwks */
);
void SelectPanId
(
 const nwkMessage_t *pMsg, /* IN -active scan confirm */
 uint8_t selectedLogicalChannel, /* IN - Channel */
 uint8_t* pPanId/* IN/OUT - Pointer to the PanId */
);
index_t SearchForSuitableParentToJoin (void);

ZigBee Device Objects

BeeStack™ Software Reference Manual, Rev. 1.0

6-10 Freescale Semiconductor

BeeStack™ Software Reference Manual, Rev. 1.0

Freescale Semiconductor 7-1

Chapter 7
ZigBee Device Profile
The ZigBee Device Profile (ZDP), found within ZDO, describes how ZDO implements features such as
service discovery and device discovery, end device bind and unbind, and binding table management.
Within ZDP, clusters and device descriptions define the supported ZigBee device capabilities.

The ZDO profile resides on endpoint zero, while all other application endpoints are assigned endpoints 1
through 240.

ZDP offers service primitives for device and service discovery, binding, and network management for the
client and server activities.

This section includes all information and service requests. Since BeeStack automatically generates the
ZDP response, if any, they are not described here. For more information, see the ZigBee Specification,
revision 13, for more information.

7.1 Application Support Layer
BeeStack augments the communication capabilities of ZDO with features available from the BeeStack
application Support layer (ASL). While not a true layer, the ASL generates commands in a form that ZDP
can efficiently process. This BeeStack element serves as a support layer for the common user interface for
applications, including ZCL and ZDO, for example.

ASL uses the SAP handlers to send commands to ZDP. For example, the ASL_NWKAddr_req is sent to
the ZDP for processing (see NWK_addr_req). For more information about ASL functions, see Chapter 5,
“Application Support Sub-layer”.

Every ZDP function may be enabled or disabled through BeeKit properties or by enabling or disabling the
option in BeeStackConfiguration.h. If BeeKit is used to adjust the property, the entire project does not
need to be exported: a simple export properties will suffice. If modifying the property in the source code,
set it to TRUE to enable the command, and FALSE to disable the command.

For example, to enable NWK_addr_req in BeeStackConfiguration.h, use:
#define gNWK_addr_req_d TRUE

Requests and responses are enabled or disabled separately. In the ZigBee specification, responses can be
mandatory while the request is optional. By separating the requests and responses, the developer can
choose which commands are appropriate for a given application, saving code space by disabling those
which are not required.

When an option is disabled, the ASL request function is stubbed via a C macro. This allows the C code to
continue to compile without error when enabling and disabling various options, but be aware that the ASL
code for that request no longer functions. For example, if an application has disabled gNWK_addr_req_d,
but calls on ASL_NWK_addr_req(), as shown in the code below:

ZigBee Device Profile

BeeStack™ Software Reference Manual, Rev. 1.0

7-2 Freescale Semiconductor

…
 (void)ASL_NWK_addr_req(NULL, aDestAddress, aIeeeAddr, 0, 0);
…

The actual code will be nothing, because the C macro will be defined as an empty macro:
#define ASL_NWK_addr_req \ (pSequenceNumber,aDestAddress,aIeeeAddr,requestType,startIndex)

NOTE
The ASL in BeeStack should not be confused with ZigBee’s application
support sub-layer (APS).

7.2 Device and Service Discovery
The distributed operations of device and service discovery allow individual devices or designated
discovery cache devices to respond to discovery requests.

The field, device address of interest, enables responses from either the device itself or a discovery cache
device. When both the discovery cache device and the device address of interest respond, the response
from the device address of interest takes precedence.

7.2.1 Device Discovery
Device discovery enables a device to determine the identity of other devices on the personal area network
(PAN). Device discovery supports both 64-bit IEEE addresses and 16-bit network addresses, and it uses
broadcast or unicast addressing.

With a broadcast-addressed discovery request, all devices on the network respond according to the logical
device type and match criteria.

• ZigBee end devices (ZED) respond with address only
• A ZigBee coordinator (ZC) or ZigBee router (ZR) with associated devices responds with additional

information: Their address is the first entry, and it may be followed, depending on the type of
request, by the addresses of their associated devices. The responding devices use APS
acknowledged service on the unicast response

When unicast addressed, only the specified device responds. A ZED responds with its address only, while
a ZC or ZR responds with its own address and the addresses of all associated child devices. The inclusion
of the associated child devices allows the requester to determine the underlying network topology for the
specified device.

7.2.2 Service Discovery
Service discovery enables a device to determine services offered by other devices on the PAN.

With broadcast address service discovery, only the individual device or primary discovery cache responds
with the requested criteria match (due to the volume of information that could be returned if every network
node responded). The primary discovery cache responds only if it contains cached discovery information
for the NWK address of interest. Also, the responding device responds with unicast APS-acknowledged
service.

ZigBee Device Profile

BeeStack™ Software Reference Manual, Rev. 1.0

Freescale Semiconductor 7-3

With unicast addressed service discovery, only the specified device responds. A ZC or ZR must cache the
Service Discovery information for sleeping associated devices and respond on their behalf.

This chapter describes the following service discovery commands:
• Active End Point
• Match Simple Descriptor
• Simple Descriptor
• Node Descriptor
• Power Descriptor
• Complex Descriptor
• User Descriptor

7.3 Primary Discovery Cache Device Operation
The node descriptor both configures and advertises a device as a primary discovery cache device. This
primary discovery cache device operates as a state machine with respect to clients utilizing its cache
services.

The primary discovery cache device has the following states:
• Undiscovered
• Discovered
• Registered
• Unregistered

If undiscovered, the primary discovery cache device uses a radius-limited broadcast, the discovery register
request, to all RxOnWhenIdle devices. It attempts to locate a primary discovery cache device within the
radius supplied in the request.

When discovered, the client unicasts a request to the discovery cache device, along with the sizes of the
discovery cache information it seeks to store. The discovery cache device responds with a SUCCESS or
TABLE_FULL.

A registered client is one that has received a SUCCESS status response from the discovery cache device
from a previous request. The client then uploads the discovery information using the node, power, active
endpoint, and simple descriptor store requests. This enables the primary discovery cache device to fully
respond to discovery requests on the client’s behalf.

Any client or device can remain unregistered by using the remove node cache request. This removes the
device from the primary discovery cache device.

NOTE
When the device holds its own discovery cache, the device then responds to
identify itself as the repository of discovery information.

ZigBee Device Profile

BeeStack™ Software Reference Manual, Rev. 1.0

7-4 Freescale Semiconductor

7.4 Binding Services
As described in , binding creates logical links between application device endpoints to allow them to work
together to perform specific tasks. Binding maintains information on each logical link in a binding table.
Each device in the network keeps its own binding table, although the ZC acts as a broker when end device
bind is used.

A primitive initiates a binding operation on a device that supports a binding table. ZDO, the next higher
layer, generates this primitive which it issues to the APS sub-layer. This is an in-memory association only
with no over-the-air behavior.

Binding is unidirectional between devices. That is, the receiving device sends a response if needed, but
issues no binding requests itself. For example, a switch sends a binding request to a light; the light may
respond, however, the light sends no binding request on its own.

7.5 ZDP Functions and Macros
ZDP, similar to any ZigBee profile, operates by defining device descriptions and clusters. The device
descriptions and clusters in ZDP, however, unlike application-specific profiles, define capabilities
supported in all ZigBee devices.

The functions and macros in this section describe some of the key activities required to establish device
communication using BeeStack.

7.5.1 ZDP Register Callback
BeeStack uses the register callback messaging function Zdp_AppRegisterCallBack() to register which
function will receive ZDO state change information. This does not affect data indications or confirms.

The applications which use ASL (Application Support Library), are set up to receive ZDO state change
information in the function ASL_ZdoCallBack() found in file ASL_UserInterface.c. If registered, ZDO
informs the application when the node has formed or joined a network, changed its permit join status and
the like. See ZDO_GetState() for more information.

Primitive
void ZDP_AppRegisterCallBack (ZDPCallBack_t pZdpAppCallBackPtr);

Parameters
• pointer to the response function

7.5.2 ZDP NLME Synchronization Request
Use this function to manually poll a parent for data from a ZigBee End Device (ZED). This is used in low
power modes, so the device can sleep for long periods, then poll the parent when it wakes up. This is used
automatically by applications using ASL.

ZigBee Device Profile

BeeStack™ Software Reference Manual, Rev. 1.0

Freescale Semiconductor 7-5

Primitive
void ASL_Nlme_Sync_req(bool_t track);

Parameters

The track parameter is ignored and should be set to FALSE.

7.6 Device and Service Discovery – Client Services
The commands that follow are unicast or broadcast addressed depending on their intent. A request for a
device address is broadcast while the requester searches. Devices will unicast the response, since only the
requester needs the information. All client side services are optional.

Table 7-1. Device and Discovery Commands

Client Service Cluster ID

ASL_NWK_addr_req 0x0000

ASL_IEEE_addr_req 0x0001

ASL_Node_Desc_req 0x0002

ASL_Power_Desc_req 0x0003

ASL_Simple_Desc_req 0x0004

ASL_Active_EP_req 0x0005

APP_ZDP_MatchDescriptor 0x0006

ASL_Complex_Desc_req 0x0010

ASL_User_Desc_req 0x0011

ASL_Discovery_Cache_req 0x0012

ASL System_Server_Discovery_req 0x0015

ASL_Discovery_store_req 0x0016

ASL_End_Device_annce 0x0013

ASL_User_Desc_set 0x0014

ASL_Discovery_store_req 0x0016

ASL_Node_Descr_store_req 0x0017

ALS_Power_Des_store_req 0x0018

ASL_Active_EP_store_req 0x0019

ASL_Remove_node_cache_req 0x001b

ASL_Find_node_cache_req 0x001c

ZigBee Device Profile

BeeStack™ Software Reference Manual, Rev. 1.0

7-6 Freescale Semiconductor

7.6.1 Network Address Request
A local device generates the ASL_NWK_add_req when seeking the 16-bit address of a remote device
based on a known IEEE address. The local device broadcasts the address request to all devices in
RxOnWhenIdle state.

This function generates a ZDP NWK_addr_req and passes it to the ZDO layer through the
APP_ZDP_SapHandler function.

Prototype
void ASL_NWK_addr_req(zbCounter_t *pSequenceNumber, zbNwkAddr_t aDestAddress, zbIeeeAddr_t
aIeeeAddr, uint8_t requestType, index_t startIndex);

ZDP Returns
• Device discards the request and does not generate a response if no match found.
• Remote device generates a response from the request type if match between the contained IEEE

address and its own IEEE address (or one held in the discovery cache) found.

7.6.2 IEEE Address Request Command
A device that generates the ASL_IEEE_addr_req requests the IEEE address and compares that address to
its local IEEE address or any IEEE address in its local discovery cache.

Prototype
void ASL_IEEE_addr_req(zbCounter_t *pSequenceNumber, zbNwkAddr_t aDestAddress, zbNwkAddr_t
aNwkAddrOfInterest, uint8_t requestType, index_t startIndex);

ZDP Returns
• Device discards the request and does not generate a response if no match found.
• Remote device generates a response from the request type if match between the contained IEEE

address and its own IEEE address (or one held in the discovery cache) found.

7.6.3 Node Descriptor Request
The command ASL_Node_Desc_req permits an enquiring device to request the node descriptor from the
specified device.

Addressed

Unicast

Prototype
void ASL_Node_Desc_req(zbCounter_t *pSequenceNumber, zbNwkAddr_t aDestAddress);

ZigBee Device Profile

BeeStack™ Software Reference Manual, Rev. 1.0

Freescale Semiconductor 7-7

Returns
• Node descriptor

7.6.4 Power Descriptor Request
The command, ASL_Power_Desc_req, permits an enquiring device to return the power descriptor from
the specified device.

Addressed

Unicast

Prototype
void ASL_Power_Desc_req(zbCounter_t *pSequenceNumber, zbNwkAddr_t aDestAddress);

ZDP Returns

Power descriptor

7.6.5 Simple Descriptor Request
This ASL_Simple_Desc_req command returns the simple descriptor for a supplied endpoint to an
enquiring device.

Addressed

Unicast

Prototype
void ASL_Simple_Desc_req(zbCounter_t *pSequenceNumber, zbNwkAddr_t aDestAddress, zbEndPoint_t
endPoint);

ZDP Returns

Simple descriptor

7.6.6 Active Endpoint Request
The ASL_Active_EP_req command requests information about active endpoints. An active endpoint is an
endpoint with an application supporting a single profile, described by a simple descriptor.

Addressed

Broadcast or Unicast

Prototype
void ASL_Active_EP_req(zbCounter_t *pSequenceNumber, zbNwkAddr_t aDestAddress);

ZigBee Device Profile

BeeStack™ Software Reference Manual, Rev. 1.0

7-8 Freescale Semiconductor

ZDP Returns

Simple descriptor for active endpoint

7.6.7 Match Descriptor Request
The match simple descriptor command, APP_ZDP_MatchDescriptor, allows devices to supply
information and ask for information in return.

Addressed

Broadcast or unicast to all RxOnWhenIdle devices

Prototype
void APP_ZDP_MatchDescriptor(zbCounter_t *pSequenceNumber, zbNwkAddr_t aDestAddress,
zbSimpleDescriptor_t *pSimpleDescriptor);

ZDP Returns
• Profile ID
• Optionally lists of input and/or output cluster IDs
• Identity of an endpoint on the destination device matching the supplied criteria
• In the case of broadcast requests, the responding device uses APS-acknowledged service on the

unicast response

7.6.8 Complex Descriptor Request
The complex descriptor is an optional command, unicast-addressed from the device seeking the complex
descriptor from a specified device, using the command ASL_Complex_Desc_req.

Prototype
void ASL_Complex_Desc_req(zbCounter_t *pSequenceNumber, zbNwkAddr_t aDestAddress);

7.6.9 User Descriptor Request
A remote device receives the ASL_User_Desc_req, responding with a unicast simple descriptor to the
originator of the command.

Addressed

Unicast to originator

Prototype
void ASL_User_Desc_req(zbCounter_t *pSequenceNumber, zbNwkAddr_t aDestAddress);

ZigBee Device Profile

BeeStack™ Software Reference Manual, Rev. 1.0

Freescale Semiconductor 7-9

ZDP Returns
• SUCCESS status notification with the requested user descriptor in the UserDescriptor field
• Error otherwise, with no UserDescriptor field

7.6.10 Discovery Cache Request
The command ASL_Discovery_Cache_req asks for Remote Devices which are Primary Discovery Cache
devices (as designated in their Node Descriptors). Devices not designated as primary discovery cache
devices should not respond to the cache discovery command.

Prototype
void ASL_Discovery_Cache_req(zbCounter_t *pSequenceNumber, zbNwkAddr_t aDestAddress,
zbNwkAddr_t aNwkAddrOfInterest, zbIeeeAddr_t aIEEEAddrOfInterest);

ZDP Returns
• SUCCESS, and the local device uses the Discovery_Store_req (targeted to the remote device

supplying the response) to determine if there is sufficient discovery cache storage available.
• The Discovery Cache Request is broadcast at the default broadcast radius (2 * nwkMaxDepth,

which defaults to 10 in stack profile 0x01).

7.6.11 End Device Announce
End-Device-Announce request is used to indicate that a node has moved to a new NWK short address
(happens automatically by BeeStack) or now has different MAC capabilities (for example, an end-device
which has been plugged in can now indicate it is mains powered with RxOnIdle=TRUE). This request
should be broadcast to the entire network so any node which communicates with this node can update its
internal information.

Prototype
void ASL_End_Device_annce(zbCounter_t *pSequenceNumber, zbNwkAddr_t aDestAddress, zbNwkAddr_t
aNwkAddress, zbIeeeAddr_t aIeeeAddress, macCapabilityInfo_t capability);

When the ZC receives the End_Device_annce message, it checks the supplied address for a match using
binding tables holding 64-bit IEEE addresses for devices within the PAN.

After checking the Binding Table and Trust Center tables and finding a match, the ZC updates its AIB
address map entries to reflect the updated 16 bit NWK address contained in the End_Device_annce.

ZigBee Device Profile

BeeStack™ Software Reference Manual, Rev. 1.0

7-10 Freescale Semiconductor

7.6.12 User Descriptor Set Request
This optional user descriptor command, ASL_User_Desc_set, permits an enquiring device to get the User
Descriptor from the specified device. It is always unicast addressed.

Prototype
void ASL_User_Desc_set(zbCounter_t *pSequenceNumber, zbNwkAddr_t aDestAddress, zbSize_t
length, zbUserDescriptor_t aUserDescription);

7.6.13 Server Discovery Request
ASL_System_Server_Discovery_req is generated from a Local Device seeking the location of a particular
system server or servers as indicated by the ServerMask parameter. The destination addressing on this
request is broadcast to all RxOnWhenIdle devices.

Prototype
void ASL_System_Server_Discovery_req(zbCounter_t *pSequenceNumber, zbNwkAddr_t aDestAddress,
zbServerMask_t aServerMask);

When a remote device receives this request, it compares the ServerMask parameter to the server mask field
in its own Node descriptor.

ZDP Returns
• If any matching bits are found, the remote device sends a System_Server_Discovery_rsp back to

the originator using unicast transmission (with acknowledgement request) indicating the matching
bits.

• If no matching bits are found, no action is taken.

7.6.14 Discovery Cache Storage Request
The Discovery_store_req allows a device on the network to request storage of its discovery cache
information on a Primary Discovery Cache device. This request includes the amount of storage space the
local device requires, and stores information for replacing a device or a sleeping device.

Prototype
void ASL_Discovery_store_req(zbCounter_t *pSequenceNumber, zbNwkAddr_t aDestAddress,
zbDiscoveryStoreRequest_t *pDiscoveryStore);

Returns
• gZdoNotSupported_c, if the remote device is not a Primary Discovery Cache device.
• Determines if it has storage for the requested discovery cache size, if the remote device is a primary

discovery cache device, by summing the sizes of the these fields:
— NWKAddr
— IEEEAddr

ZigBee Device Profile

BeeStack™ Software Reference Manual, Rev. 1.0

Freescale Semiconductor 7-11

— NodeDescSize
— PowerDescSize
— ActiveEPSize
— sizes from the SimpleDescSizeList

• gZbSuccess_c, if sufficient space exists, and the remote device reserves the storage space
requested.

• gZdoTableFull_c, if there is no available space.

Additionally, the Remote Device replaces the previous entry and discovery cache information with the
newly registered data if the local device IEEEAddr matches, but the NWKAddr differs from, a previously
stored entry.

7.6.15 Store Node Descriptor on Primary Cache Device
A device requests the storage of its node description on a primary discovery cache device using the
ASL_Node_Descr_store_req. The request includes the information, in this case, the node descriptor,
that the local device is attempting to place in cache.

Prototype
void ASL_Node_Desc_store_req(zbCounter_t *pSequenceNumber, zbNwkAddr_t aDestAddress,
zbNodeDescriptor_t *pNodeDescriptor);

Returns
• gZdoNotSupported_c, if the remote device is not a primary discovery cache device.
• gZbSuccess_c, if the NWKAddr and IEEEAddr in the request referred to addresses already held in

the Primary Discovery Cache, the descriptor in this request shall overwrite the previously held
entry.

• gZdoInvalidRequestType_c, if ASL_Discovery_store_req() was not successfully called for this
node.

7.6.16 Store Power Descriptor Request
Similarly, the function call ASL_Power_Desc_store_req seeks to store the local device’s power
information in a remote device’s primary discovery cache.

Prototype
void ASL_Power_Desc_store_req(zbCounter_t *pSequenceNumber, zbNwkAddr_t aDestAddress,
zbPowerDescriptor_t *pPowerDescriptor);

Returns
• gZdoNotSupported_c, if the remote device is not a primary discovery cache device
• gZbSuccess_c, if worked

ZigBee Device Profile

BeeStack™ Software Reference Manual, Rev. 1.0

7-12 Freescale Semiconductor

• gZdoInvalidRequestType_c, if ASL_Discovery_store_req() was not successfully called for this
node

7.6.17 Active Endpoint List Storage Request
ASL_Active_EP_store_req enables devices in the network to request storage of their list of active
endpoints to a primary discovery cache device that has previously received a SUCCESS status from a
Discovery_store_req to the same Primary Discovery Cache device.

Included in this request is the count of Active Endpoints the Local Device wishes to cache and the endpoint
list itself.

Prototype
void ASL_Active_EP_store_req(zbCounter_t *pSequenceNumber, zbNwkAddr_t aDestAddress,
zbCounter_t activeEPcount, zbEndPoint_t *pActiveEPList);

Returns
• gZdoNotSupported_c, if it is not a Primary Discovery Cache device.
• gZbSuccess_c, if storage completed.
• gZdoInvalidRequestType_c, if ASL_Discovery_store_req() was not successfully called for this

node.
• If the request returned a status Success and both the NWKAddr and IEEEAddr are already in the

primary discovery cache, the remote device replaces the previous entry and discovery cache
information with the newly registered data.

7.6.18 Simple Descriptor Storage Request
A device requests the storage of its simple descriptor on a primary discovery cache device using the
ASL_Simple_Descr_store_req. This conditional request must come from a node that has previously
received a SUCCESS status from an earlier discovery storage request to the same primary discovery cache
device.

Prototype
void ASL_Simple_Desc_store_req(zbCounter_t *pSequenceNumber, zbNwkAddr_t aDestAddress,
zbNodeDescriptor_t *pNodeDescriptor);

Returns
• NOT_SUPPORTED, if the remote device is not a primary discovery cache device.
• SUCCESS, if the IEEEAddr in the request referred to addresses already held in the primary

discovery cache; the descriptor in this request overwrites a previously held entry.
• NOT_PERMITTED, if it has not previously allowed the request.
• INSUFFICIENT_SPACE, if no space to store the simple descriptor.

ZigBee Device Profile

BeeStack™ Software Reference Manual, Rev. 1.0

Freescale Semiconductor 7-13

7.6.19 Remove Node Cache Request
With ASL_Remove_node_cache_req, ZigBee devices on the network request that a Primary Discovery
Cache device remove the discovery cache information for a specified ZED.

This request undoes a previously successful Discovery_store_req and additionally removes any cache
information stored on behalf of the specified ZED on the Primary Discovery Cache device.

Prototype
void ASL_Remove_node_cache_req(zbCounter_t *pSequenceNumber, zbNwkAddr_t aDestAddress,
zbNwkAddr_t aNwkAddress, zbIeeeAddr_t aIeeeAddress);

ZDP Returns
• NOT_SUPPORTED, if not a primary discovery cache device.
• NOT_PERMITTED, if a prior response with anything but SUCCESS was issued.
• SUCCESS, if primary discovery cache device, and overwrites all cached discovery information for

the device of interest.

7.6.20 Find Node Cache Request
The ASL_Find_node_cache_req() allows a ZigBee node to find which node in the network is caching
information for the requested node. Both the IEEE and NWK address must match the entry to be found.
The aDestAddress should be set to gaBroadcastRxOnIdle to find the proper cache.

Prototype
void ASL_Find_node_cache_req(zbCounter_t *pSequenceNumber, zbNwkAddr_t aDestAddress,
zbNwkAddr_t aNwkAddress, zbIeeeAddr_t aIeeeAddress);

ZDP Returns
• gZbSuccess_c if found, and the return address in the response function as registered by

Zdp_AppRegisterCallBack().
• No response will be received if there is no cache in the network that supports the node in question.

7.7 Binding Management Service Commands
The requests to bind to a device, as well as store, back up, or recover binding table entries, are unicast to
a destination device. The list in Table 7-2 includes the unicast-addressed commands and cluster IDs for the
commands detailed in the sections that follow.

Many commands in this section use an "index" as one of the parameters. Sending or retrieving tables, the
size of the table may exceed the maximum size of a ZigBee packet. In this case, a partial list is sent over
the air. The index is used to indicate where in the list this partial list begins. For example, if
ASL_Backup_Bind_Table_req(), is issued, the first time it would be called with a StartIndex of 0 . If only
6 binding table entries can fit in the payload, then the next time it is called, the StartIndex would be set to
6, and so on through the table. The number of entries in the partial list that may be sent over the air depends

ZigBee Device Profile

BeeStack™ Software Reference Manual, Rev. 1.0

7-14 Freescale Semiconductor

on the size of the structure in question. When receiving entries from a table, BeeStack will automatically
calculate the proper size. When the application is transmitting a table, the maximum size can be calculated
by using the maximum payload of 80 bytes, subtracting the header for that payload, and dividing by the
size of each entry.

7.7.1 End Device Bind Request
This command binds two nodes together using a button press or some similar user interface mechanism.
This command is always issued to the ZigBee coordinator (ZC), so the aDestAddress must always be {
0x00, 0x00 }. The ZC then determines if the two nodes match (for example, a light and a switch).

If the two nodes match, then they are bound together. A match is determined by comparing the input cluster
of one node with the output cluster of the other node. Both nodes are checked for a match. If an input
cluster on one side (for example, the OnOffCluster 0x0006) matches the output cluster on the other side
(for example, 0x0006), then they are considered a match. The side with the output cluster receives the
following binding commands.

NOTE
Both sides may match on the output cluster, in which case both sides would
receive the binding commands.

Bindings are actually stored in the nodes themselves (source binding), not in the ZC.

First an UnBindRequest() is issued by the ZC to the matching node, then, if that is successful, a
BindRequest(). The reason for this is that EndDeviceBind is a toggle. That is, if the nodes are already
bound, then it will unbind. If the nodes are not bound, then it will bind.

Prototype
void APP_ZDP_EndDeviceBindRequest(zbCounter_t *pSequenceNumber, zbNwkAddr_t aDestAddress,
zbSimpleDescriptor_t *pSimpleDescriptor);

Table 7-2. Service Commands for Binding Management

Command Cluster ID

APP_ZDP_EndDeviceBindRequest 0x0020

APP_ZDP_BindRequest 0x0021

APP_ZDP_UnbindRequest 0x0022

ASL_Bind_Register_req 0x0023

ASL_Replace_Device_req 0x0024

ASL_Store_Bkup_Bind_Entry_req 0x0025

ASL_Remove_Bkup_Bind_Entry_req 0x0026

ASL_Backup_Bind_Table_req 0x0027

ASL_Recover_Bind_Table_req 0x0028

ASL_Backup_Source_Bind_req 0x0029

ASL_Recover_Source_Bind_req 0x002a

ZigBee Device Profile

BeeStack™ Software Reference Manual, Rev. 1.0

Freescale Semiconductor 7-15

ZDP Returns
• gZdoNoMatch_c, if the two nodes do not match.
• gZdoInvalidEndPoint_c, if the source endpoint is out of range (valid range is 1-240).
• gEndDevBindTimeOut_c, if a second node doesn't request EndDeviceBind
• gZbSuccess_c worked. Devices are either bound or unbound (depending on toggle).

7.7.2 Bind Request
A local device seeking to add a binding table entry generates the ZDP_BindRequest, using the contained
source and destination addresses as parameters. The unicast destination address must be that of the Primary
binding table cache or the SrcAddress.

Prototype
void APP_ZDP_BindRequest(zbCounter_t *pSequenceNumber, zbNwkAddr_t aDestAddress, zbMsgId_t
BindUnbind, zbBindRequest_t *pBindUnBindRequest);

ZDP Returns
• NOT_SUPPORTED, if the SrcAddress is specified but binding manager unsupported on the

remote device.
• SUCCESS, and SrcAddress added.

7.7.3 Unbind Request
A local device seeking to remove a binding table entry generates the ZDP_UnbindRequest, using the
contained source and destination addresses as parameters. The unicast destination address must be that of
the primary binding table cache or the SrcAddress.

Prototype
void APP_ZDP_UnbindRequest(zbCounter_t *pSequenceNumber, zbNwkAddr_t aDestAddress, zbMsgId_t
Unbind, zbUnbindRequest_t *pUnBindRequest);

ZDP Returns
• NOT_SUPPORTED, if the SrcAddress is specified but the binding manager is unsupported on that

remote device.
• NO_ENTRY, if a binding table entry does not exist for the SrvAddress, SrcEndp, ClusterID,

DstAddress, and DstEndp contained as parameters.
• SUCCESS, otherwise, and the remote device, which is either a primary binding table cache or the

SrcAddess, removes the binding table entry based on the Unbind_req parameters.

ZigBee Device Profile

BeeStack™ Software Reference Manual, Rev. 1.0

7-16 Freescale Semiconductor

7.7.4 Local Bind Register Request
A local device generates the ASL_Bind_Register_req to notify a primary binding table cache device that
the local device will hold its own binding table entries. The local device uses the unicast destination
address to the primary binding cache device.

Prototype
void ASL_Bind_Register_req(zbCounter_t *pSequenceNumber, zbNwkAddr_t aDestAddress,
zbIeeeAddr_t aNodeAddress);

ZDP Returns
• NOT_SUPPORTED, if the remote device is not a primary binding table cache.
• SUCCESS, and adds the NodeAddress given by the parameter to its table of other source devices

that have chosen to store their own binding table.
• TABLE_FULL if the request fails.

NOTE
If an entry for the NodeAddress already exists in the table of source devices,
the behavior will be the same as if it had been newly added. To avoid
synchronization problems, the source device should clear its source binding
table before issuing this ASL_Bind_Register_req command.

When a SUCCESS status message results, any existing bind entries from the binding table with source
address NodeAddress are sent to the requesting device for inclusion in its source bind table. See
Bind_Register_rsp for additional information on this response.

7.7.5 Replace Device Request
ASL_Replace_Device_req requests that a primary binding table cache device change, as specified, all
binding table entries that match OldAddress and OldEndpoint.

NOTE
OldEndpoint = 0 has special meaning and signifies that only the address
needs to be matched. In this case, the endpoint in the binding table is not
changed and NewEndpoint is ignored.

Processing the ASL_Replace_Device command changes all binding table entries for which the source
address is the same as OldAddress. If OldEndpoint is non-zero, this additionally changes to NewEndpoint
the binding table entry to for which the source endpoint is the same as OldEndpoint.

It changes all binding table entries for which the destination address is the same as OldAddress (and if
OldEndpoint is non-zero) and the destination endpoint the same as OldEndpoint. The destination
addressing mode for this request is unicast.

ZigBee Device Profile

BeeStack™ Software Reference Manual, Rev. 1.0

Freescale Semiconductor 7-17

Prototype
void ASL_Replace_Device_req(zbCounter_t *pSequenceNumber, zbNwkAddr_t aDestAddress,
zbNwkAddr_t aOldAddress, zbEndPoint_t oldEndPoint, zbNwkAddr_t aNewAddress, zbEndPoint_t
newEndPoint);

ZDP Returns
• NOT_SUPPORTED, if the remote device is not a primary binding table cache.
• The primary binding table cache confirms that its OldAddress is non-zero. It then searches its

binding table for entries of source addresses and entries, or destination addresses and source
addresses, set the same as OldAddress and OldEndpoint.

• In the case that OldEndpoint is zero, the primary binding table cache searches its binding table for
entries whose source address or destination address match OldAddress. It changes the address to
NewAddress, leaving the endpoint value unchanged and ignoring NewEndpoint.

• SUCCESS, then it changes these entries to have NewAddress and NewEndpoint.

For more information on this command, refer to ZigBee Specification revision 13, December 2006.

7.7.6 Store Backup Bind Entry Request
A local primary binding table cache generates the Store_Bkup_Bind_Entry_req and, by sending to a
remote backup binding table cache device, requests backup storage of the entry. It generates this request
whenever a new binding table entry has been created by the primary binding table cache. The destination
addressing mode for this request is unicast, and this affects one entry only.

Prototype
void ASL_Store_Bkup_Bind_Entry_req(zbCounter_t *pSequenceNumber, zbNwkAddr_t aDestAddress,
zbStoreBkupBindEntryRequest_t *pStoreBkupEntry);

ZDP Returns
• NOT_SUPPORTED, if the remote device is not a backup binding table.
• SUCCESS, if the contents of the Store_Bkup_Bind_Entry parameters match an existing entry in

the binding table cache.
• SUCCESS when the backup binding table simply adds the binding entry to its binding table.
• TABLE_FULL, if there is no room to store the information.

If it is the backup binding table cache, it maintains the identity of the primary binding table cache from
previous discovery.

7.7.7 Remove Entry from Backup Storage
A local primary binding table cache generates the ASL_Remove_Bkup_Bind_Entry_req request and
issues the request to a remote backup binding table cache device to remove the entry from backup storage.
ZDP generates this request whenever a binding table entry has been unbound by the primary binding table
cache. The destination addressing mode for this request is unicast, and it affects only one entry.

ZigBee Device Profile

BeeStack™ Software Reference Manual, Rev. 1.0

7-18 Freescale Semiconductor

Prototype
void ASL_Remove_Bkup_Bind_Entry_req(zbCounter_t *pSequenceNumber, zbNwkAddr_t aDestAddress,
zbRemoveBackupBindEntryRequest_t *pRemoveBkupEntry);

ZDP Returns
• NOT_SUPPORTED, if the remote device is not a backup binding table cache.
• INV_REQUESTTYPE, if it does not recognize the sending device as the primary binding table

cache.
• SUCCESS, keeping the identity of the primary binding table cache from previous discovery.
• NO_ENTRY, if no entry is found.

7.7.8 Backup Binding Table Request
A local primary binding table cache issues the Backup_Bind_Table_req request to the remote backup
binding table cache device, seeking backup storage of its entire binding table. The destination addressing
mode for this request is unicast.

Prototype
void ASL_Backup_Bind_Table_req(zbCounter_t *pSequenceNumber, zbNwkAddr_t aDestAddress,
zbBackupBindTableRequest_t *pBackupBindTable);

ZDP Returns
• NOT_SUPPORTED, if the remote device is not a backup binding table cache.
• INV_REQUESTTYPE, if it does not recognize the sending device as a primary binding table

cache.
• TABLE_FULL, if this exceeds its table size; it then fills in as many entries as possible.
• SUCCESS, if all other conditions are met, and the table is effectively truncated at the end of the

last entry written by the request.
• Since it is a backup binding table cache, it maintains the identity of the primary binding table cache

from previous discovery. Otherwise, the backup binding table cache overwrites its binding table
entries, starting with StartIndex and continuing for BindingTableListCount entries.

• Unless it returns TABLE_FULL, the response returns the new size of the table (equal to StartIndex
+ BindingTableListCount).

7.7.9 Recover Binding Table Request
The Recover_Bind_Table_req is generated from a local primary binding table cache and sent to a remote
backup binding table cache device when it wants a complete restore of the binding table. The destination
addressing mode for this request is unicast.

Prototype
void ASL_Recover_Bind_Table_req(zbCounter_t *pSequenceNumber, zbNwkAddr_t aDestAddress,
index_t index);

ZigBee Device Profile

BeeStack™ Software Reference Manual, Rev. 1.0

Freescale Semiconductor 7-19

ZDP Returns
• NOT_SUPPORTED if the remote device is not the backup binding table cache.
• INV_REQUESTTYPE, if it does not recognize the sending device as a primary binding table

cache.
• SUCCESS, and the backup binding table cache creates a list of binding table entries from its

backup beginning with StartIndex and fits as many entries as possible into a
Recover_Bind_Table_rsp command.

7.7.10 Source Binding Table Backup Request
The local primary binding table cache generates a Backup_Source_Bind_req to request backup storage of
its entire source table of a remote backup binding table cache device. The destination addressing mode for
this request is unicast, and it includes the IEEE address.

Prototype
void ASL_Backup_Source_Bind_req(zbCounter_t *pSequenceNumber, zbNwkAddr_t aDestAddress,
zbBackupSourceBindRequest_t *pBkupSourceBindTable);

ZDP Returns
• NOT_SUPPORTED, if the remote device is not the backup binding table cache.
• INV_REQUESTTYPE, if it does not recognize the sending device as a primary binding table

cache.
• TABLE_FULL, if this exceeds its table size.
• SUCCESS if able to complete the request, and the command truncates the backup table to a number

of entries equal to its maximum size or SourceTableEntries, whichever is smaller.
• The backup binding table cache otherwise overwrites the source entries in its backup source table

starting with StartIndex and continuing through SourceTableListCount entries.

7.7.11 Recover Source Binding Table Request
A local primary binding table cache generates the Recover_Source_Bind_req to send to the remote backup
binding table cache device when it wants a complete restore of the source bind table. The destination
addressing mode for this request is unicast.

Prototype
void ASL_Recover_Source_Bind_req(zbCounter_t *pSequenceNumber, zbNwkAddr_t aDestAddress,
index_t index);

ZDP Returns
• NOT_SUPPORTED, if the remote device is not the backup binding table cache.
• INV_REQUESTTYPE, if it does not recognize the sending device as a primary binding table

cache.

ZigBee Device Profile

BeeStack™ Software Reference Manual, Rev. 1.0

7-20 Freescale Semiconductor

• SUCCESS, after it creates a list of source bind table entries from its backup beginning with
StartIndex and fits as many entries as possible into a Recover_Source_Bind_rsp command.

7.8 Network Management Services
The network discovery requests occur when an end device, node, or application seeks to join or form a
network. These services use both client and server components, since the client (end device) makes the
request of a device, and the application object on the server sends a response.

7.8.1 Management Network Discovery Request
A local device requests that a remote device scan and then report back any networks in the vicinity of the
initiating device using the command ASL_Mgmt_NWK_Disc_req. The unicast addressed request includes
several parameters, including channels, duration, and network address.

Prototype
void ASL_Mgmt_NWK_Disc_req(zbCounter_t *pSequenceNumber, zbNwkAddr_t aDestAddress,
zbChannels_t aScanChannel, zbCounter_t scanDuration, index_t startIndex);

ZDP Returns

Nothing

7.8.2 Management LQI Request
A local device looking to obtain a neighbor list for a remote device issues the ASL_Mgmt_Lqi_req, along
with the link quality indicator (LQI) values for each neighbor. This command uses unicast addressing, and
the destination address can only be a ZC or ZR. ZDP responds with the ASL_Mgmt_Lqi_rsp command.

Prototype
void ASL_Mgmt_Lqi_req(zbCounter_t *pSequenceNumber, zbNwkAddr_t aDestAddress, index_t index);

ZDP Returns

Nothing

The remote device (ZR or ZC) retrieves the entries of the neighbor table and associated LQI values using
the NLME-GET.request primitive (for the nwkNeighborTable attribute) and with the Mgmt_Lqi_rsp
command reports the resulting neighbor table (obtained via the NLME-GET.confirm primitive).

ZigBee Device Profile

BeeStack™ Software Reference Manual, Rev. 1.0

Freescale Semiconductor 7-21

7.8.3 Routing Discovery Management Request
A local device attempts to retrieve the contents of the routing table from a remote device with this
ASL_Mgmt_Rtg_req command. The unicast destination address must be that of the ZR or ZC.

Prototype
void ASL_Mgmt_Rtg_req(zbCounter_t *pSequenceNumber, zbNwkAddr_t aDestAddress, index_t index);

ZDP Returns

Nothing

The routing table is then acquired via the Mgmt_Rtg_rsp command using the NLME-GET.confirm
primitive.

7.8.4 Management Bind Request
A Local Device seeking the contents of the binding table from the remote device generates a
Mgmt_Bind_req command. The unicast destination address is a primary binding table cache or source
device holding its own binding table. Upon receipt, a remote device (ZC or ZR) obtains the binding table
entries from the APS sub-layer via the APSMEGET.request primitive (for the apsBindingTable attribute).

Prototype
void ASL_Mgmt_Bind_req(zbCounter_t *pSequenceNumber, zbNwkAddr_t aDestAddress, index_t index);

ZDP Returns

Nothing

7.8.5 Management Leave Request
A local device requests that a remote device leave the network using the Mgmt_Leave_req command.
Generated by a management application, the Mgmt_Leave_req sends the request to a remote device. The
remote device executes the request using the NLME-LEAVE.request using the parameters supplied in the
Mgmt_Leave_req. The local device is notified of the results of its attempt to cause a remote device to leave
the network.

Prototype
void ASL_Mgmt_Leave_req(zbCounter_t *pSequenceNumber, zbNwkAddr_t aDestAddress, zbIeeeAddr_t
aDeviceAddres, zbMgmtOptions_t mgmtOptions);

ZDP Returns

Nothing

ZigBee Device Profile

BeeStack™ Software Reference Manual, Rev. 1.0

7-22 Freescale Semiconductor

7.8.6 Management Permit Joining
A local device uses the command Mgmt_Permit_Joining_req to request that a remote device (or devices)
permit or disallow association. This sets a flag for every device to true or false.

Generated by a management application or commissioning tool on the local device, the
NLME-PERMIT-JOINING.request executes using the PermitDuration parameter supplied by
Mgmt_Permit_Joining_req. This request affects the trust center authentication if the remote device is the
Trust Center and TC_Significance is set to 1. Addressing may be unicast or broadcast to all
RxOnWhenIdle devices.

Upon receipt, the remote device(s) shall issue the NLME-PERMITJOINING. request primitive using the
PermitDuration parameter supplied with the Mgmt_Permit_Joining_req command.

Prototype
void ASL_Mgmt_Permit_Joining_req(zbCounter_t *pSequenceNumber, zbNwkAddr_t aDestAddress,
zbCounter_t permitDuration, uint8_t TC_Significance);

ZDP Returns

Nothing

7.8.7 Management Cache
ZigBee devices in a network obtain the list of ZEDs registered with a primary discovery cache device using
the Mgmt_Cache_req command. This is a unicast address to the destination primary discovery cache
device, which first determines if it is a primary discovery cache and if it supports this optional request
primitive.

Prototype
void ASL_Mgmt_Cache_Req(zbCounter_t *pSequenceNumber, zbNwkAddr_t aDestAddress, index_t
index);

ZDP Returns

Nothing

7.9 ZDO Layer Status Values
Table 7-3 provides status responses for the commands listed above in this section.

Table 7-3. ZDO Status Values

Macro ID Description

gZbSuccess_c 0x00 Indicates request succeeded

gZdoInvalidRequestType_c 0x80 Supplied request type was invalid

gZdoDeviceNotFound_c 0x81 Requested device did not exist on a device following a child descriptor request to a parent

ZigBee Device Profile

BeeStack™ Software Reference Manual, Rev. 1.0

Freescale Semiconductor 7-23

gZdoInvalidEndPoint_c 0x82 Supplied endpoint was equal to 0x00 or between 0xf1 and 0xff

gZdoNotActive_c 0x83 Requested endpoint is not described by a simple descriptor

gZdoNotSupported_c 0x84 Requested optional feature is not supported on the target device

gZdoTimeOut_c 0x85 Requested operation timed out

gZdoNoMatch_c 0x86 End device bind request was unsuccessful due to failure to match any suitable clusters

gZdoNoEntry_c 0x88 Unbind request was unsuccessful due to ZC or source device not having an entry in its
binding table to unbind

gZdoInsufficientSpace_c 0x8a Device does not have storage space to support the requested operation

gZdoNotPermited_c 0x8b Device is not in the proper state to support the requested operation

gZdoTableFull 0x8c Device does not have table space to support the operation

gZdoSetAddrMapFailure_c 0x8d Unable to add to the address map

Table 7-3. ZDO Status Values (continued)

ZigBee Device Profile

BeeStack™ Software Reference Manual, Rev. 1.0

7-24 Freescale Semiconductor

BeeStack™ Software Reference Manual, Rev. 1.0

Freescale Semiconductor 8-1

Chapter 8
Network Layer
The BeeStack network (NWK) layer handles the following duties:

• Joining and leaving a network
• Applying security to frames
• Routing frames to their intended destinations
• Discovering and maintaining routes between devices
• Discovering one-hop neighbors
• Storing pertinent neighbor information

For the ZC, the NWK layer specifically handles starting a new network when appropriate, as well as
assigning addresses to newly associated devices.

The NWK layer provides both correct operation of the IEEE 802.15.4-2003 MAC sub-layer and a suitable
service interface to the application layer. Two service entities interface with the application layer to
provide those necessary functionalities, the data service and the management service.

Figure 8-1. Network Layer Interfaces

The NWK layer data entity (NLDE) handles data transmission service through its associated service access
point, the NLDE-SAP.

A p p l i c a t io n
O b je c t

2 4 0

S
ec

ur
ity

S
er

vi
ce

P
ro

vi
de

r

M A C (I E E E 8 0 2 . 1 5 . 4)

N e t w o r k L a y e r
N W K

A p p l i c a t i o n S u p p o r t
S u b - l a y e r

A P S

A p p l i c a t io n
O b je c t

1

A p p l ic a t io n F r a m e w o r k (A F)
Z i g b e e
D e v i c e
O b j e c t
(Z D O)

ZD
O

M
anagem

entP
lane

APSM
E-S

AP

N L D E - S A P N L M E - S A P

N
LM

E-SAP

M L M E - S A PM L D E - S A P

P h y s ic a l (P H Y) L a y e r

A
pp

lic
at

io
n

La
ye

r

A P S D E - S A P
E n d P o i n t

0
E n d p o i n t 1

A P S D E - S A P

P L M E - S A PP D - S A P

E n d p o i n t 2 4 0
A P S D E - S A P

Network Layer

BeeStack™ Software Reference Manual, Rev. 1.0

8-2 Freescale Semiconductor

The (NLME) provides data management services through the NLME-SAP. The NLME utilizes the NLDE
for some of its management tasks. The NLME also maintains a database of managed objects known as the
network information base (NIB).

8.1 Channel and PAN Configuration
These sections describe the channel list and detail how the PAN is configured.

8.1.1 Channel Configuration
The default channel list defines which channels to scan when forming or joining a network.

As shown in Figure 8-2, the channel list is a bitmap, where each bit identifies a channel (for example bit
12 corresponds to channel 12). Any combination of channels can be included. Only channels 11-26 are
available to users.

Figure 8-2. Channel List Bitmap

8.1.1.1 Channel Default Value

Channel 25 serves as the default network channel value for all applications, although users may change
that information using BeeKit.

Macro
#define mDefaultValueOfChannel_c

Parameter
0x02000000

3 2 2 2 1 1 0 0 0
1 8 4 0 6 2 8 4 0

Channel

0000 0000 0000 0000 0000 1000 0000 0000 0x04000000 26
0000 0100 0000 0000 0000 0000 0000 0000 0x00000800 11
0000 0010 0000 0000 0000 0000 0000 0000 0x02000000 25
0000 0111 1111 1111 1111 1000 0000 0000 0x07fff800 All 11-26
0000 0000 1000 0000 0001 0000 0000 0000 0x00800000 23 and 12

Table 8-1. Hexadecimal Channel Values

Channel
Number Channel Value (Hex) 32-bit Value

11 0x0B 0x00000800

12 0x0C 0x00001000

13 0x0D 0x00002000

14 0x0E 0x00004000

15 0x0F 0x00008000

16 0x10 0x00010000

Network Layer

BeeStack™ Software Reference Manual, Rev. 1.0

Freescale Semiconductor 8-3

8.1.2 PAN ID
The personal area network (PAN) ID establishes a unique identifier used to form or join the network.
ZigBee PAN IDs range from 0 - 0x3fff (0x00,0x00-0xff,0x3f in the little-endian form that all values are
sent over the air).

When forming a network, the PAN ID 0xffff indicates random PAN ID selection. The ZC will generate a
PAN ID that does not match any PAN IDs it can locate on its chosen channel. When joining a network, a
node with an 0xFFFF PAN ID will join any network it finds that meet any other criteria the application or
initial configuration might require.

Macro
mDefaultValueOfPanId_c

Default
0xab, 0x1b

8.1.3 Beacon Notify
A device issues a beacon request every time it performs network discovery (during network forming and
joining). The beacon request goes out over the air to any device in range. Every ZC and ZR that hears the
beacon request must return a beacon response.

The MAC layer of the device receiving the beacon response passes the response to the NWK layer as a
beacon-notify indication.

17 0x11 0x00020000

18 0x12 0x00040000

19 0x13 0x00080000

20 0x14 0x00100000

21 0x15 0x00200000

22 0x16 0x00400000

23 0x17 0x00800000

24 0x18 0x01000000

25 0x19 0x02000000

26 0x1A 0x04000000

Table 8-1. Hexadecimal Channel Values (continued)

Network Layer

BeeStack™ Software Reference Manual, Rev. 1.0

8-4 Freescale Semiconductor

8.1.3.1 Parse Beacon Notification
The function ParseBeaconNotifyIndication processes every beacon-notify indication received, with the
function exposed to the application so it can filter the beacons. This filtering allows the application to
choose the appropriate response to be included in the list to select a router. In the case of a ZC, the filtering
checks for PAN ID conflicts or selects a channel with the fewest active networks.

Essentially, the ParseBeaconNotifyIndication allows the device to ignore a beacon if there is a protocol
ID or stack profile conflict. This parse-beacon indicator also confirms end device or router capacity.
Additional filters come into play as the device processes the request. For example, a device may check to
see if there is space in the neighbor table to save information sent in the response. The following functions
provide further filtering for the receiving device.

8.1.3.2 Parent to Join
The function SearchForSuitableParentToJoin selects a potential parent to join from a list formed with the
responses sent by the devices that heard the beacon request.

8.1.3.3 Select PAN ID
The function SelectPanId chooses a PAN ID for the device seeking to form a network, when the upper layer
specifies NULL as PanId (0xFFFF). This selection is based on the extended PAN ID, the NWK PAN ID,
and the link quality, depth, and permit join flags.

8.1.3.4 Select Logical Channel
The MAC layer sends an active scan confirmation invoking the function SelectLogicalChannel. The ZC
selects a logical network, with the channel selection criteria set for first one with zero networks, or the one
containing the smallest number of PANs.

8.1.4 NWK Layer Interfaces
The macros in Table 8-2 use the given attributeId to call the relevant function.

Table 8-2. NWK Layer Functions and Attributes

Function Description

NlmeGetRequest(attributeId#) Get a simple attribute from the NIB (e.g., nwkShortAddress).

NlmeGetRequestTableEntry(attributeId,index) Get an entry from NIB table attribute (for example, address map)

NlmeSetRequest(attributeId, pValue) Set a simple attribute from the NIB (for example, nwkShortAddress).

NlmeSetRequestTableEntry(attributeId,index,pValue) Set an entry from an NIB table attribute (e.g., address map)

IsLocalDeviceTypeARouter() Returns true or false response (device is or is not a router)

IsLocalDeviceReceiverOnWhenIdle() Returns true or false response (true = radio always on even if idle)

Network Layer

BeeStack™ Software Reference Manual, Rev. 1.0

Freescale Semiconductor 8-5

8.1.5 NWK Layer Filters
These NWK layer filters allow putting in place limits to the networks a given device can hear.

8.1.5.1 Hear Short Address
This function checks for a specific address listed in the IcanHearYouTable.

Macro
bool_t CanIHearThisShortAddress(uint8_t *pSourceAddress);

Returns
• False, if gICanHearYouCounter is anything but 0 and the address given was not in the table
• True, otherwise

8.1.5.2 Set Table List
This macro sets the IcanHearYouTable.
Bool_t SetICanHearYouTable(uint8_t addressCounter, zbNwkAddr_t *pAddressList);

Returns
• False, if addressCounter is larger than the IcanHearYouTable.
• True, sets the device list in the table

8.1.5.3 Get Table List
This macro gets a pointer to the destination buffer where the table is going to be copied, along with the
size of destination buffer.

Macro
index_t GetICanHearYouTable(zbNwkAddr_t *pDstTable, index_t maxElementsInDstTable);

Returns

Number of table entries copied to destination buffer and the table list.

8.2 NWK Information Base
The NWK information base (NIB) contains all of the attributes used by the NWK layer when
communicating with adjacent layers.

Network Layer

BeeStack™ Software Reference Manual, Rev. 1.0

8-6 Freescale Semiconductor

Table 8-3. NWK Information Base Attributes

Attribute ID Type Range Description Default

nwkSequenceNumber 0x81 Integer 0x00 - 0xff Sequence number used to
identify outgoing frames

Random value
from within
range

nwkPassiveAckTimeout 0x82 Integer 0x00 - 0x0a Maximum time duration in
seconds allowed for parent and
all child devices to retransmit a
broadcast message (passive
ACK time-out)

0x03

nwkMaxBroadcastRetries 0x83 Integer 0x00 - 0x5 Maximum number of retries
allowed after a broadcast
transmission failure

0x03

nwkMaxChildren 0x84 Integer 0x00 - 0xff The number of children a device
is allowed to have on its current
network

0x07

nwkMaxDepth 0x85 Integer 0x01 -
nwkcMax

Depth

Depth a device can have:
maximum hops from ZC

0x05

nwkMaxRouters 0x86 Integer 0x01-0xff Max number of routers any one
device is allowed to have as
children; This value is
determined by the ZC for all
devices in the network

0x05

nwkNeighborTable 0x87 Set Variable Current set of neighbor table
entries in the device

Null set

nwkNetworkBroadcastDeliveryTimel 0x88 Integer (nwkPassiveAc
kTimeouT*

nwkBroadcast
Retries

0x00 – 0xff

Time duration in seconds that a
broadcast message needs to
encompass the entire network

nwkPassiveAck
Timeout *
nwkBroadcastR
etries

nwkReportConstantCost 0x89 Integer 0x00-0x01 If set to 0, the NWK layer
calculates link cost from all
neighbor nodes using LQI values
reported by the MAC layer; it
reports a constant value
otherwise

0x00

nwkRouteDiscoveryRetries
Permitted

0x8a Integer 0x00-x03 Number of retries allowed after
an unsuccessful route request

nwkcDiscovery
RetryLimit

nwkRouteTable 0x8b Set Variable Current set of routing table
entries in the device

Null set

BeeStack™ Software Reference Manual, Rev. 1.0

Freescale Semiconductor 9-1

Chapter 9
Application Support Layer
BeeStack augments the communication capabilities of ZDO with the Application Support Layer (ASL).
Although not a true layer, ASL generates application and application-layer commands in a form that ZDP
can efficiently process.

ASL uses the SAP handlers to send commands to ZDP. For example, the ASL_NWKAddr_req gets taken
over by ZDP for processing (see NWK_addr_req).

See the file ASL_Interface.c for a list of all the LCD strings.

The application support layer (ASL) includes all of the utility function prototypes for the BeeKit
applications.

9.1 ASL Utility Functions
The function prototypes in ASL_UserInterface.h include the following:

• void ASL_InitUserInterface(char *pApplicationName);
• void ASL_DisplayChangeToCurrentMode(uint8_t DeviceMode);
• void ASL_UpdateDevice(zbEndPoint_t ep, SystemEvents_t event);
• void ASL_HandleKeys(key_event_t event);
• void ASL_ChangeUserInterfaceModeTo(UIMode_t DeviceMode);
• void ASL_AppSetLed(LED_t LEDNr,LedState_t state);
• void ASL_LCDWriteString(char *pstr);
• void ASL_DisplayTemperature(int16_t Temperature);

9.2 ASL Data Types
The structure ASL_DisplayStatus_t keeps track of the LED states for certain modes in an application.
typedef struct ASL_DisplayStatus_Tag{

uint8_t Leds;
} ASL_DisplayStatus_t;

The structure ASL_SendingNwkData_t keeps the information for the type of communication between
applications. For example,
typedef struct ASL_SendingNwkData_tag{

zbAddrMode_t gAddressMode;
zbGroupId_t aGroupId;
zbSceneId_t aSceneId;
zbNwkAddr_t NwkAddrOfIntrest;

}ASL_SendingNwkData_t;

Application Support Layer

BeeStack™ Software Reference Manual, Rev. 1.0

9-2 Freescale Semiconductor

Table 9-1 shows the messages used by the application for certain events, which can be re-configured by
the developer. See also ASL_Interface.h for a list of all the LCD strings.

Table 9-1. ASL User Interface Messages

String Variable Default Value

gsASL_ChannelSelect[] “Select channel”

gsASL_Running[] “Running Device”

gsASL_PermitJoinEnabled[] “Permit Join (E)”

gsASL_PermitJoinDisabled[] “Permit Join (D)”

gsASL_Binding[] “Binding”

gsASL_BindingFail[] “Binding Fail“

gsASL_BindingSuccess[] “Binding Success“

gsASL_UnBinding[] “UnBinding“

gsASL_UnBindingFail[] “UnBinding Fail“

gsASL_UnBindingSuccess[] “UnBinding Success“

gsASL_RemoveBind[] “Remove Binding“

gsASL_ResetNode[] “ResetNode“

gsASL_IdentifyEnabled[] “Identify Enabled“

gsASL_IdentifyDisabled[] “Identify Disabled“

gsASL_Matching[] “Matching“

gsASL_MatchFound[] “Match Found“

gsASL_MatchFail[] “Match Fail“

gsASL_MatchNotFound[]" “No Match Found“

Application Support Layer

BeeStack™ Software Reference Manual, Rev. 1.0

Freescale Semiconductor 9-3

9.3 ASL Utility Functions
The application support library (ASL) includes all of the utility function prototypes for the BeeKit
applications.

9.3.1 Initialize User Interface
This function initializes the devices (LEDs and keys), data, and callback functions needed for the user
interface.

Prototype
void ASL_InitUserInterface(char *pApplicationName);

9.3.2 Set Serial LEDs
This function flashes the LEDs in a serial pattern and keeps track of the state of the LEDs when in the
application mode.

Prototype
void ASL_SerialLeds(void);

9.3.3 Stop Serial LEDs
This function stops the serial LEDs flashing and turns off all of them.

Prototype
void ASL_StopSerialLeds(void);

9.3.4 Set LED State
The function ASL_SetLed sets the state of the LED (LED1, LED2, LED3 or LED4, LED_ALL) to a given
state (gLedFlashing_c, gLedStopFlashing_c, gLedOn_c, gLedOff_c, gLedToggle_c) in the application
mode, keeping track of all the states changes in this mode.

Prototype
void ASL_AppSetLed(LED_t LEDNr, uint8_t state);

9.3.5 Write to LCD
This function writes a given string (pstr) on line one of the LCD, when the LCD is supported.

Prototype
void ASL_LCDWriteString(char *pstr);

Application Support Layer

BeeStack™ Software Reference Manual, Rev. 1.0

9-4 Freescale Semiconductor

9.3.6 Change User Interface Mode
This function indicates to the device the mode in which it is running, and sends as a parameter the mode
to change to, either gConfigureMode_c for configuration mode or gApplicationMode_c for application
mode.

Prototype
void ASL_ChangeUserInterfaceModeTo(uint8_t DeviceMode);

9.3.7 Display Current User Interface Mode
ASL_DisplayChangeToCurrentMode displays the device mode when changing between user interface
modes. The function uses the parameters gConfigureMode_c for configuration mode or
gApplicationMode_c for application mode.

Prototype
void ASL_DisplayChangeToCurrentMode(uint8_t DeviceMode);

9.3.8 Update Device
Based on the application event, the function ASL_UpdateDevice will call certain functions. This
function contains all the events common to all applications using the files ASL_UserInterface.h and
ASL_UserInterface.c. Those common events include End Device Bind, Change Mode, toggle identify
mode, add group, store scene, and recall scene.

Prototype
void ASL_UpdateDevice(zbEndPoint_t ep, uint8_t event);

9.3.9 Handle Keys
This function handles the common keys to all applications using the files ASL_UserInterface.h and
ASL_UserInterface.c, regardless of mode (application or configuration).

Prototype
void ASL_HandleKeys(key_event_t);

9.3.10 Display Temperature
This function displays a temperature value (negative or positive) on the LCD in the form “TEMP = 452
C”.

Prototype
void ASL_DisplayTemperature(int16_t Temperature);

BeeStack™ Software Reference Manual, Rev. 1.0

Freescale Semiconductor 10-1

Chapter 10
BeeStack Common Functions
The BeeStack common prototypes provide helper functions to all layers in BeeStack. These primitives
allow, among many things, switching from over-the-air (OTA) to native format (that is, from little-endian
to big-endian multi-byte values), as well as specifying the number of elements in an array.

10.1 BeeStack Common Prototypes
The prototypes common to all BeeStack layers include functions that convert to and from native formats
to over-the-air formats, as shown in Table 10-1.

BeeStack common macros, shown in Table 10-2, include functions that define the member offset and
number of elements in arrays.

Table 10-1. Common Prototypes

Prototype Description

uint16_t OTA2Native16(uint16_t); For converting from over-the-air to native format

uint16_t Native2OTA16(uint16_t); For converting from native to over-the-air format

uint16_t Swap2Bytes(uint16_t); Used to convert between over-the-air (OTA) format (little endian) and native format (big
endian on HCS08).

Table 10-2. Common Macros

Macro Description

NumberOfElements(array) Number of elements in an array

MbrOfs(type, member) Offset of a member within a structure

MbrSizeof(type, member) Size of a member in a structure

UintOf(p2Bytes) (*(uint16_t *) (p2Bytes)) Casts value to uint16 value

BeeStack Common Functions

BeeStack™ Software Reference Manual, Rev. 1.0

10-2 Freescale Semiconductor

10.2 Common Network Functions
The BeeStack common network functions in Table 10-3 include confirming the NWK address, verifying
the NWK address, and copying bytes to overwrite table entries.

Table 10-3. BeeStack Common Network Functions

Functions Description

bool_t IsSelfIeeeAddress(zbIeeeAddr_t aIeeeAddr); Is this the node’s own IEEE address (True or
False)

bool_t IsSelfNwkAddress(zbNwkAddr_t aNwkAddr); Is this the node’s own NWK address?

bool_t IsBroadcastAddress(zbNwkAddr_t aNwkAddr); Is this one of the broadcast addresses?

bool_t IsValidNwkUnicastAddr(zbNwkAddr_t aNwkAddr); Is this a valid NWK addr for unicasting?

bool_t IsValidNwkAddr(zbNwkAddr_t aNwkAddr); Confirm valid NWK address

void BeeUtilLargeMemSet(void *pBuffer, uint8_t value, uint16_t iCount); Set a large array of memory (larger than
FLib_memset can handle

void Copy8Bytes(zbIeeeAddr_t aIeeeAddr1,zbIeeeAddr_t aIeeeAddr2 Copies 8 bytes from one location to another.
Assumes they do not overlap. Used throughout
the code

bool_t IsEqual8Bytes(zbIeeeAddr_t aIeeeAddr1, zbIeeeAddr_t aIeeeAddr2); Are the two IEEE addresses equal?

void Fill8BytesToZero(zbIeeeAddr_t aIeeeAddr1); Fill IEEE (long) address with 0s

void FillWithZero(void *pBuffer, uint8_t size); Fill any length buffer with 0s

bool_t Cmp8BytesToZero(zbIeeeAddr_t aIeeeAddr1); Is this IEEE address all 0s?

bool_t Cmp8BytesToFs(zbIeeeAddr_t aIeeeAddr1); Compare this IEEE address to all 0xFFs

uint16_t Swap2Bytes(uint16_t iOldValue); Swaps bytes to convert between OTA and
native format for a 16-bit word

void Swap2BytesArray(uint8_t *pArray); Swaps bytes to convert between OTA and
native format for a 2-byte array

uint8_t *FLib_MemChr(uint8_t *pArray, uint8_t iValue, uint8_t iLen); Look for a byte in an array of bytes

void BeeUtilSetIndexedBit(uint8_t *pBitArray, index_t iBit); Set an indexed bit (used by APS group
functions)

uint8_t BeeUtilClearIndexedBit(uint8_t *pBitArray, index_t iBit); Clear the bit

bool_t BeeUtilGetIndexedBit(uint8_t *pBitArray, index_t iBit); Get the bit

bool_t BeeUtilArrayIsFilledWith(uint8_t *pArray, uint8_t value, index_t iLen); Check to see if an array is filled with a particular
value

BeeStack™ Software Reference Manual, Rev. 1.0

Freescale Semiconductor 11-1

Chapter 11
User-Configurable BeeStack Options
BeeStack gets most of its configuration from BeeKit properties (which are compile-time options). This
section explains some of these compile-time options available to the user.

Freescale recommends setting all options through BeeKit.

11.1 Compile-Time Options
These compile-time options can be changed by the user. The compile-time options are included in the
ApplicationConf.h file.

Table 11-1. ApplicationConf.h Compile-Time Options

Option Description

mDefaultValueOfChannel_c Select the default channel(s) on which to form or join the network. Bit mask
of channels. Use 0x07fff800 to allow any of the 16 channels (11-26) to form
or join a network.

mDefaultValueOfPanId_c Default value of PAN ID on which to form or join the network. Use 0xffff to
choose random PAN ID on which to form, or any PAN ID on which to join.

mDefaultNwkExtendedPANID_c Default value of extended PAN ID. Use
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 to choose the IEEE address of
the ZC when forming a network or to mean any extended PAN ID (use
mDefaultValueOfPanId_c) when joining a network. Extended PAN ID takes
precedence over the PAN ID option.

mDefaultValueOfExtendedAddress_c The MAC (or IEEE) address of the node. Use
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 to request the stack pick a
random MAC address; do not use this for production nodes.

mDefaultValueOfAuthenticationPollTimeOut_c The time (in milliseconds) for a node to poll for joining a network.

mDefaultValueOfPollTimeOut_c The time (in milliseconds) for and end-device to poll its parent.

gRxOnWhenIdle_d Set to 0x01 (TRUE) to enable a ZED to continuously power it’s receiver.
Doesn’t use polling.

mDefaultValueOfNetworkKey_c The default network key. Can be any 128-bit value.

mDefaultValueOfNwkKeyPreconfigured_c Choose whether a preconfigured key or non-preconfigured key is used. A
non-preconfigured key is sent over-the-air in the clear on the last hop when
a node joins the network, which is used in a Home Automation network. A
preconfigured key must be entered into the node out of band (through a serial
port or other application defined method)

gAllowNonSecure_d Allow non-secure packets to be sent/received on a secure network. Note: this
creates a security loop-hole if enabled. Disabled (set to FALSE) by default.

mDefaultValueOfEndDeviceBindTimeOut_c The time (in milliseconds) for an end-device-bind to timeout on the ZC.

User-Configurable BeeStack Options

BeeStack™ Software Reference Manual, Rev. 1.0

11-2 Freescale Semiconductor

mDefaultValueOfPermitJoinDuration_c Value of permit join. Default is 0xff which is always on. Set to 0x00 to have
permit join off when the node starts up.

mDefaultValueOfNwkScanAttempts_c Number of active scans to request beacons. Set higher if network is dense
(many nodes in the vicinity).

mDefaultValueOfNwkTimeBwnScans_c Time in milliseconds between beacon scans.

mDefaultValueOfAuthTimeOutDuration_c Timeout for authentication process. Defaults to 0x1188 (5000) milliseconds.

mDefaultReuseAddressPolicy_c When a child leaves, is it OK to reuse the address? Set to FALSE by default.

gMaxFailureCounter_c Determines # of times a polling child must fail to contact its parent before
trying to rejoin the network.

mDefaultValueOfNwkFormationAttempts_c This determines how many times to attempt to form the network. This option
is ignored.

mDefaultValueOfEndDeviceBindTimeOut_c Default timeout (in milliseconds) between the ZC receiving one
end-device-bind request and the second end-device-bind request. Defaults
to 10 seconds.

mDefaultValueOfDiscoveryAttemptsTimeOut_c Timeout between network discovery attempts. Defaults to 0.

mDefaultValueOfNwkDiscoveryAttempts_c Number of attempts to discover a network to join. Defaults to 0, which means
forever.

mDefaultValueOfBatteryLifeExtension_c Does this node operate on batteries?

mDefaultValueOfCurrPowerSourceAndLevel_c Set the current power source and level.

mDefaultValueOfNwkOrphanScanAttempts_c How many times to attempt to join when orphaned? End devices only.
Defaults to 0, which means forever.

mDefaultValueOfNwkSecurityLevel_c This must always be set to 5.

mDefaultValueOfLpmStatus_c Enable low power during startup or wait until application enables low power.

gPowerSource_d Set to TRUE if on batteries.

Table 11-1. ApplicationConf.h Compile-Time Options (continued)

User-Configurable BeeStack Options

BeeStack™ Software Reference Manual, Rev. 1.0

Freescale Semiconductor 11-3

11.2 More Compile-time Options
Compile-time options available to users in BeeStackConfiguration.h include those macros listed in
Table 11-2.

Table 11-2. BeeStackConfiguration.h Compile-Time Options

Option Description

gNwkInfobaseMaxBroadcastRetries_c Number of retries on each broadcast. Default is 2.

gCoordinatorNwkInfobaseMaxNeighborTableEntry_c Number of neighbor table entries on a ZC. Default is 24.

gRouterNwkInfobaseMaxNeighborTableEntry_c Number of neighbor table entries on a ZR. Default is 25.

gEndDevNwkInfobaseMaxNeighborTableEntry_c Number of neighbor table entries on a ZED. Default is 6.

gNwkInfobaseMaxRouteTableEntry_c Number of entries in the routing table. Default is 6.

gNwkMaximumChildren_c Maximum number of total children (routers + end-devices). Default is
20 and must be 20 for Stack Profile 0x01. Advanced option.

gNwkMaximumRouters_c Maximum number of routers. Default is 6. Advanced option.

gNwkMaximumDepth_c Maximum depth from ZC in a tree/mesh network. Default is 5.
Advanced option.

gICanHearYouTableCapability_d Set to 0x01 (TRUE) to enable the I-can-hear-you-table. Allows for
easy capture of ZigBee routing behavior by defining which nodes can
hear which other nodes.

gDefaultValueOfMaxEntriesForICanHearYouTable_c Number of entries in the table. Only enabled if
gICanHearYouTableCapability_d is enabled.

gApsMaxAddrMapEntries_c Number of address map entries. Used for binding tables. Default is
5. Set to at least gMaximumApsBindingTableEntries_c.

gMaximumApsBindingTableEntries_c Number of local binding table entries. Default 5.

gApsMaxGroups_c Number of local group table entries. Default 5.

gApsMaxRetries_c Maximum # of retries by APS layer. Default 3.

gApsAckWaitDuration_c Wait (in milliseconds) between APS retries. Default is 1800
milliseconds or 1.8 seconds.

gScanDuration_c The scan duration for energy detect and active scans, as defined by
the ZigBee specification (an exponential scale).

gNWK_addr_req_d Enable request.

gNWK_addr_rsp_d Enable response.

gIEEE_addr_req_d Enable request.

gIEEE_addr_rsp_d Enable response.

gNode_Desc_req_d Enable request.

gNode_Desc_rsp_d Enable response.

gPower_Desc_req_d Enable request.

gPower_Desc_rsp_d Enable response.

User-Configurable BeeStack Options

BeeStack™ Software Reference Manual, Rev. 1.0

11-4 Freescale Semiconductor

gSimple_Desc_req_d Enable request.

gSimple_Desc_rsp_d Enable response.

gActive_EP_req_d Enable request.

gActive_EP_rsp_d Enable response.

gMatch_Desc_req_d Enable request.

gMatch_Desc_rsp_d Enable response.

gComplex_Desc_req_d Enable request.

gComplex_Desc_rsp_d Enable response.

gUser_Desc_req_d Enable request.

gUser_Desc_rsp_d Enable response.

gDiscovery_Cache_req_d Enable request.

gDiscovery_Cache_rsp_d Enable response.

gEnd_Device_annce_d Enable end-device-announce when a node joins or rejoins the
network.

gUser_Desc_set_d Enable request.

gUser_Desc_conf_d Enable response.

gSystem_Server_Discovery_req_d Enable request.

gSystem_Server_Discovery_rsp_d Enable response.

gDiscovery_store_req_d Enable request.

gDiscovery_store_rsp_d Enable response.

gNode_Desc_store_req_d Enable request.

gNode_Desc_store_rsp_d Enable response.

gPower_Desc_store_req_d Enable request.

gPower_Desc_store_rsp_d Enable response.

gActive_EP_store_req_d Enable request.

gActive_EP_store_rsp_d Enable response.

gSimple_Desc_store_req_d Enable request.

gSimple_Desc_store_rsp_d Enable response.

gRemove_node_cache_req_d Enable request.

gRemove_node_cache_rsp_d Enable response.

gFind_node_cache_req_d Enable request.

gFind_node_cache_rsp_d Enable response.

gEnd_Device_Bind_req_d Enable request.

gEnd_Device_Bind_rsp_d Enable response.

Table 11-2. BeeStackConfiguration.h Compile-Time Options

User-Configurable BeeStack Options

BeeStack™ Software Reference Manual, Rev. 1.0

Freescale Semiconductor 11-5

gBind_req_d Enable request.

gBind_rsp_d Enable response.

gUnbind_req_d Enable request.

gUnbind_rsp_d Enable response.

gBind_Register_req_d Enable request.

gBind_Register_rsp_d Enable response.

gReplace_Device_req_d Enable request.

gReplace_Device_rsp_d Enable response.

gStore_Bkup_Bind_Entry_req_d Enable request.

gStore_Bkup_Bind_Entry_rsp_d Enable response.

gRemove_Bkup_Bind_Entry_req_d Enable request.

gRemove_Bkup_Bind_Entry_rsp_d Enable response.

gBackup_Bind_Table_req_d Enable request.

gBackup_Bind_Table_rsp_d Enable response.

gRecover_Bind_Table_req_d Enable request.

gRecover_Bind_Table_rsp_d Enable response.

gBackup_Source_Bind_req_d Enable request.

gBackup_Source_Bind_rsp_d Enable response.

gRecover_Source_Bind_req_d Enable request.

gRecover_Source_Bind_rsp_d Enable response.

gMgmt_NWK_Disc_req_d Enable request.

gMgmt_NWK_Disc_rsp_d Enable response.

gMgmt_Lqi_req_d Enable request.

gMgmt_Lqi_rsp_d Enable response.

gMgmt_Rtg_req_d Enable request.

gMgmt_Rtg_rsp_d Enable response.

gMgmt_Bind_req_d Enable request.

gMgmt_Bind_rsp_d Enable response.

gMgmt_Leave_req_d Enable request.

gMgmt_Leave_rsp_d Enable response.

gMgmt_Direct_Join_req_d Enable request.

gMgmt_Direct_Join_rsp_d Enable response.

gMgmt_Permit_Joining_req_d Enable request.

gMgmt_Permit_Joining_rsp_d Enable response.

Table 11-2. BeeStackConfiguration.h Compile-Time Options

User-Configurable BeeStack Options

BeeStack™ Software Reference Manual, Rev. 1.0

11-6 Freescale Semiconductor

gMgmt_Cache_req_d Enable request.

gMgmt_Cache_rsp_d Enable response.

gSystemEventEnabled_d Tell application about ZDO and system events. Defaults to TRUE.

gNumberOfEndPoints_c Maximum number of application endpoints supported by the node.
Default is 5.

Table 11-2. BeeStackConfiguration.h Compile-Time Options

BeeStack™ Software Reference Manual, Rev. 1.0

Freescale Semiconductor 12-1

Chapter 12
BeeStack Security
BeeStack supports full ZigBee security for stack profile 0x01 of the ZigBee 2006 specification.

12.1 Security Overview
Adding security into a ZigBee network has the following effects

• Every data packet (at the network payload level) is encrypted with AES 128-bit encryption. This
means that 802.15.4 radios not on the ZigBee network will not be able to understand the packets
sent over-the-air.

• Every packet is authenticated using the same AES 128-bit encryption engine and a 32-bit frame
counter. This means that 802.15.4 radios not on the ZigBee network will not be able to send
over-the-air data to any node in the network, even using a direct replay of the octets from a previous
message.

• Over-the-air packets grow by 15 bytes, with the addition of the AUX header. See Figure 12-1
below.

• Transmitting becomes slightly slower (by about 5ms per encode/decode).

While the network is protected from replay attacks, ZigBee security does not prevent
• Denial of service attacks. Any 802.15.4 radio could be put into constant transmit mode using up all

bandwidth in the local vicinity.
• Rogue nodes from hearing the key when a node joins a network (only if non-preconfigured key is

used. Preconfigured keys are never transmitted in the clear).

Figure 12-1. Secure ZigBee Packet Example

BeeStack Security

BeeStack™ Software Reference Manual, Rev. 1.0

12-2 Freescale Semiconductor

ZigBee security shares a network key among all nodes in the network, sometimes called a symmetric key.
It is assumed in ZigBee that the network is generally closed (joining disabled) and that if a node is allowed
on the network, that the node is trusted. The ZigBee trust center (on the ZigBee Coordinator) has the ability
to kick nodes off the network, or deny them access in the first place.

ZigBee security comes in two modes:
Preconfigured key Means that each node somehow “knows” the network key out-of-band, perhaps

installed at the factory or by a special commissioning tool. The key is never sent
over the air and can be securely updated to a new key.

Non-preconfigured key Used in less secure networks, such as home automation. The key is sent (last hop
only) in the clear.

In addition to the standard ZigBee security, BeeStack offers the ability to send unsecured packets in a
secure network. This behavior is not compatible with the ZigBee public profiles standard but could be used
in private profiles. To send unsecured packets on a secure network, disable the
gApsTxOptionSecEnabled_c field in the txOptions flags of the AF_DataRequest().

12.2 Security Configuration Properties
The following security properties can be modified in BeeKit to configure BeeStack security.

12.2.1 mDefaultValueOfNwkKeyPreconfigured_c
Set mDefaultValueOfNwkKeyPreconfigured_c to 1 to enable a preconfigured key (key obtained
out-of-band). Set it to 0 to enable non-preconfigured key (over-the-air key transport).

12.2.2 mDefaultValueOfNwkSecurityLevel_c
Always use mDefaultValueOfNwkSecurityLevel_c level 5 for compatibility with ZigBee stack profile
0x01. The other ZigBee security levels are listed below for completeness.

12.2.3 mDefaultValueOfNetworkKey_c
The mDefaultValueOfNetworkKey_c property lists the key that will be used by BeeStack as the initial key.
This key as a 128-bit key (for use with AES 128-bit encryption), and can be any value other than 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 (all zeros).

12.2.4 gDefaultValueOfMaxEntriesForExclusionTable_c
The gDefaultValueOfMaxEntriesForExclusionTable_c property determines how many entries are in the
exclusion table. These will be automatically excluded from joining the network by the trust center in a
secure network. See the next section for more details.

BeeStack Security

BeeStack™ Software Reference Manual, Rev. 1.0

Freescale Semiconductor 12-3

12.3 ZigBee Trust Center Authentication
The trust center resides on the ZigBee Coordinator. This trust center is the only device that allows a node
on a secure ZigBee network. The trust center is not required for normal operation, only for adding nodes
or switching the security key.

The trust center has the opportunity to disallow nodes from joining the network. BeeStack has a built-in
exclusion table, or the application can modify the function
bool_t deviceInExclusionTable(uint8_t *pIeeeAddress)

to include any sort of algorithm to include or exclude a node. The ZigBee specification only provides the
IEEE (sometimes called MAC) address for this purpose. There is no other data about the node wishing to
join the network. This function can be found in ZdoNwkManager.c.

A node can be forced off the network. To do this, use prototype for the leave request. See ZDP for a
complete discussion of this ASL interface to ZDP.
void ASL_Mgmt_Leave_req
(

zbCounter_t *pSequenceNumber,
zbNwkAddr_t aDestAddress,
zbIeeeAddr_t aDeviceAddres,
zbMgmtOptions_t mgmtOptions

);

BeeStack Security

BeeStack™ Software Reference Manual, Rev. 1.0

12-4 Freescale Semiconductor

	About This Book
	Audience
	Organization
	Revision History
	Conventions
	Definitions, Acronyms, and Abbreviations
	Reference Materials
	Chapter 1 Introduction
	1.1 What This Document Describes
	1.2 What This Document Does Not Describe

	Chapter 2 ZigBee Overview
	2.1 Network Elements
	2.1.1 Device Types
	2.1.2 Star Network
	2.1.3 Tree Network
	2.1.4 Mesh Network
	2.1.5 Personal Area Network
	2.1.6 Channels
	2.1.7 Device and Service Discovery
	2.1.8 Addressing/Messaging
	2.1.9 Binding

	2.2 Application Elements
	2.2.1 Applications
	2.2.2 Attributes
	2.2.3 Clusters
	2.2.4 Endpoints

	Chapter 3 BeeStack Features
	3.1 BeeStack Task Scheduler
	3.2 BeeStack Application Programming Interface
	3.3 Source Files - Directory Structure
	3.4 Miscellaneous Source Files

	Chapter 4 Application Framework
	4.1 AF Types
	4.2 Endpoint Management
	4.2.1 Simple Descriptor
	4.2.2 Register Endpoint
	4.2.3 De-register Endpoint
	4.2.4 Get Endpoint
	4.2.5 Find Endpoint Descriptor

	4.3 Message Allocation
	4.4 AF Data Requests
	4.5 AF Data Indications

	Chapter 5 Application Support Sub-layer
	5.1 Direct and Indirect Data Addressing
	5.2 APS Layer Interface
	5.2.1 Get Request
	5.2.2 Set Request
	5.2.3 Get Table Entry
	5.2.4 Set Table Entry
	5.2.5 Add to Address Map
	5.2.6 Remove from Address Map
	5.2.7 Find IEEE Address in Address Map
	5.2.8 Get NWK Address from IEEE Address
	5.2.9 Get IEEE Address from NWK Address

	5.3 Binding
	5.3.1 Bind Request
	5.3.2 Unbind Request
	5.3.3 Find Binding Entry
	5.3.4 Find Next Binding Entry
	5.3.5 Clear Binding Table
	5.3.6 Add Group Request
	5.3.7 Remove Group Request
	5.3.8 Remove Endpoint from All Groups Request
	5.3.9 Identify Endpoint Group Membership
	5.3.10 Group Reset Function

	5.4 AIB Attributes

	Chapter 6 ZigBee Device Objects
	6.1 ZDO State Machine
	6.2 General ZDO Interfaces
	6.2.1 Get State Machine
	6.2.2 Start ZDO State Machine without NVM
	6.2.3 Start ZDO State Machine with NVM
	6.2.4 Stop ZDO State Machine
	6.2.5 Stop ZDO and Leave

	6.3 Device Specific ZDO Interfaces
	6.3.1 ZC State Machine
	6.3.2 ZR State Machine
	6.3.3 ZED Machine State

	6.4 Selecting PAN ID, Channel and Parent

	Chapter 7 ZigBee Device Profile
	7.1 Application Support Layer
	7.2 Device and Service Discovery
	7.2.1 Device Discovery
	7.2.2 Service Discovery

	7.3 Primary Discovery Cache Device Operation
	7.4 Binding Services
	7.5 ZDP Functions and Macros
	7.5.1 ZDP Register Callback
	7.5.2 ZDP NLME Synchronization Request

	7.6 Device and Service Discovery - Client Services
	7.6.1 Network Address Request
	7.6.2 IEEE Address Request Command
	7.6.3 Node Descriptor Request
	7.6.4 Power Descriptor Request
	7.6.5 Simple Descriptor Request
	7.6.6 Active Endpoint Request
	7.6.7 Match Descriptor Request
	7.6.8 Complex Descriptor Request
	7.6.9 User Descriptor Request
	7.6.10 Discovery Cache Request
	7.6.11 End Device Announce
	7.6.12 User Descriptor Set Request
	7.6.13 Server Discovery Request
	7.6.14 Discovery Cache Storage Request
	7.6.15 Store Node Descriptor on Primary Cache Device
	7.6.16 Store Power Descriptor Request
	7.6.17 Active Endpoint List Storage Request
	7.6.18 Simple Descriptor Storage Request
	7.6.19 Remove Node Cache Request
	7.6.20 Find Node Cache Request

	7.7 Binding Management Service Commands
	7.7.1 End Device Bind Request
	7.7.2 Bind Request
	7.7.3 Unbind Request
	7.7.4 Local Bind Register Request
	7.7.5 Replace Device Request
	7.7.6 Store Backup Bind Entry Request
	7.7.7 Remove Entry from Backup Storage
	7.7.8 Backup Binding Table Request
	7.7.9 Recover Binding Table Request
	7.7.10 Source Binding Table Backup Request
	7.7.11 Recover Source Binding Table Request

	7.8 Network Management Services
	7.8.1 Management Network Discovery Request
	7.8.2 Management LQI Request
	7.8.3 Routing Discovery Management Request
	7.8.4 Management Bind Request
	7.8.5 Management Leave Request
	7.8.6 Management Permit Joining
	7.8.7 Management Cache

	7.9 ZDO Layer Status Values

	Chapter 8 Network Layer
	8.1 Channel and PAN Configuration
	8.1.1 Channel Configuration
	8.1.2 PAN ID
	8.1.3 Beacon Notify
	8.1.4 NWK Layer Interfaces
	8.1.5 NWK Layer Filters

	8.2 NWK Information Base

	Chapter 9 Application Support Layer
	9.1 ASL Utility Functions
	9.2 ASL Data Types
	9.3 ASL Utility Functions
	9.3.1 Initialize User Interface
	9.3.2 Set Serial LEDs
	9.3.3 Stop Serial LEDs
	9.3.4 Set LED State
	9.3.5 Write to LCD
	9.3.6 Change User Interface Mode
	9.3.7 Display Current User Interface Mode
	9.3.8 Update Device
	9.3.9 Handle Keys
	9.3.10 Display Temperature

	Chapter 10 BeeStack Common Functions
	10.1 BeeStack Common Prototypes
	10.2 Common Network Functions

	Chapter 11 User-Configurable BeeStack Options
	11.1 Compile-Time Options
	11.2 More Compile-time Options

	Chapter 12 BeeStack Security
	12.1 Security Overview
	12.2 Security Configuration Properties
	12.2.1 mDefaultValueOfNwkKeyPreconfigured_c
	12.2.2 mDefaultValueOfNwkSecurityLevel_c
	12.2.3 mDefaultValueOfNetworkKey_c
	12.2.4 gDefaultValueOfMaxEntriesForExclusionTable_c

	12.3 ZigBee Trust Center Authentication

