

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, emplo

March 2017

FIN1001 3.3 V LVDS 1-Bit, High-Speed Differential Driver

Features

- Greater than 600 Mbs Data Rate
- 3.3 V Power Supply Operation
- 0.5 ns Maximum Pulse Skew
- 1.5 ns Maximum Propagation Delay
- Low Power Dissipation
- Power-Off Protection
- Meets or exceeds TIA/EIA-644 LVDS Standard
- Flow-through pin-out simplifies PCB Layout
- 5-Lead SOT23 package saves Space

Description

This single driver is designed for high-speed interconnects utilizing Low Voltage Differential Signaling (LVDS) technology. The driver translates LVTTL levels to LVDS levels with a typical differential output swing of 350 mV which provides low EMI at ultra low power dissipation even at high frequencies. This device is ideal for high-speed transfer of clock or data. The FIN1001 can be paired with its companion receiver, the FIN1002, or with any other LVDS receiver.

Ordering Information

Part Number	Operating Temperature Range	Package	Packing Method	Packing Quantity
FIN1001M5X	-40 to +125°C	5-Lead SOT23, JEDEC MO-178, 1.6 mm	Tape & Reel	3000

Connection Diagram

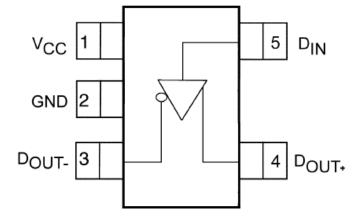


Figure 1. Top View

Pin Definitions

Pin#	Name	Description	
1	Vcc	Power Supply	
2	GND	Ground	
3	D _{OUT} -	Inverting LVDS Driver Output	
4	D _{OUT+}	Non-inverting LVDS Driver Output	
5	Din	LVTTL Data Input	

Function Table

Input	Outputs		
D _{IN}	D _{OUT+}	D _{OUT} -	
LOW	LOW	HIGH	
HIGH	HIGH	LOW	

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Para	meter	Min.	Max.	Unit
Vcc	Supply Voltage		-0.5	4.6	V
Din	DC Input Voltage		-0.5	6.0	V
D _{оит}	DC Output Voltage		-0.5	4.6	V
I _{OSD}	Driver Short Circuit Current		Continuous		
lo	Output Current			16	mA
T _{STG}	Storage Temperature Range		-65	+150	°C
TJ	Maximum Junction Temperature			+150	°C
TL	Lead Temperature, Soldering, 10 Seconds			+260	°C
ESD	Electrostatic Diocharas	Human Body Model		7500	V
	Electrostatic Discharge	Machine Model		400	V

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. ON Semiconductor does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Max.	Unit
Vcc	Supply Voltage	3.0	3.6	V
VIN	Input Voltage	0	Vcc	V
TA	Operating Temperature	-40	+125	°C

DC Electrical Characteristics(1)

All min and max values are guaranteed at $T_A = -40^\circ$ to +125°C, unless otherwise specified. All typical values are at $T_A = 25^\circ$ C and with $V_{CC} = 3.3$ V, unless otherwise specified.

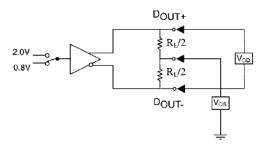
Symbol	Parameter	Conditions		Min	Тур	Max	Unit
.,	0		T _A = -40° to 85°C	250	350	450	mV
Vod	Output Differential Voltage		T _A = -40° to 125°C	230	350	450	mV
ΔV_OD	V _{OD} Magnitude Change from Differential Low-to-High	$R_L = 100 \Omega$,				25	mV
Vos	Offset Voltage	See Figure 2	T _A = -40° to 125°C	1.125	1.25	1.375	V
ΔVos	Offset Magnitude Change from Differential Low-to-High					25	mV
loff	Power-Off Output Current	V _{CC} = 0 V, V _{OUT} = 0 V or 3.6 V				±20	μΑ
	Short Circuit Output Current	Vout = 0 V			-5.5 -8		mA
los		$V_{OD} = 0 V$			±4	±8	- ma
I _{I(OFF)}	Power-OFF Input Current	$V_{CC} = 0 \text{ V}, V_{IN} = 0 \text{ V or } 3.6 \text{ V}$				±20	μΑ
V _{IH}	Input HIGH Voltage			2.0		Vcc	V
VIL	Input LOW Voltage			GND		0.8	V
I _{IN}	Input Current	$V_{IN} = 0 \text{ V or } V_{C}$	C			±20	μΑ
I _{I(OFF)}	Power-Off Input Current	Vcc = 0V, V _{IN} = 0 V or 3.6 V				±20	μA
V _{IK}	Input Clamp Voltage	I _{IK} = −18 mA		-1.5	-0.8		V
Icc	Davis Complex Company	No Load, V _{IN} =	0 V or Vcc		4.5	8	A
	Power Supply Current	$R_L = 100 \Omega, V_H$	$_{N} = 0 \text{ V or V}_{CC}$		6.5	10	mA
Cin	Input Capacitance	Vcc = 3.3 V			3.2		pF
Соит	Output Capacitance	V _{CC} = 0 V			3.3		pF

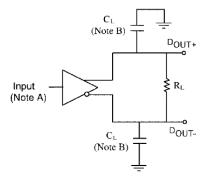
Notes:

1. Not production tested across the full temperature range.

March 2017

AC Electrical Characteristics


All min and max values are guaranteed at T_A = -40 to +85°C. All typical values are at T_A = 25°C and with V_{CC} = 3.3 V, unless otherwise specified. R_L = 100 Ω , C_L = 5 pF. See Figure 3 and Figure 4.


Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
tplhd	Propagation Delay	LOW to HIGH	0.50	0.98	1.50	ns
tpHLD	Propagation Delay	HIGH to LOW	0.50	0.93	1.50	ns
tTLHD	Differential Output Rise Time	20% to 80%	0.4	0.5	1.0	ns
t _{THLD}	Output Fall Time	80% to 20%	0.4	0.5	1.0	ns
tsk(p)	Pulse Skew	tplh - tphl		0.05	0.5	ns
tsk(PP)	Part-to-Part Skew(2)				1.0	ns

Note:

2. tsk(PP) is the magnitude of the difference in propagation delay times between any specified terminals of two devices switching in the same direction (either LOW-to-HIGH or HIGH-to-LOW) when both devices operate with the same supply voltage, same temperature, and have identical test circuits.

Test Diagrams

Note A: All input pulses have frequency = 10 MHz, t_R or t_F = 2 ns Note B: C_L includes all probe and fixture capacitances

Figure 2. Differential Driver DC Test Circuit

Figure 3. Differential Driver Propagation Delay and Transition Time Test Circuit

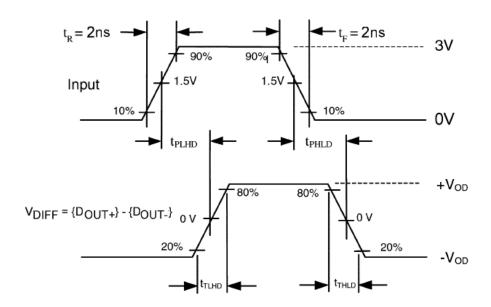


Figure 4. AC Waveforms

Typical Performance Characteristics

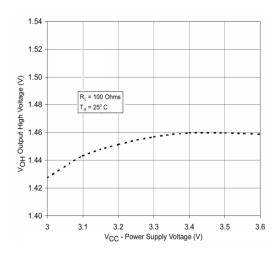


Figure 5. Output High Voltage vs. Power Supply Voltage

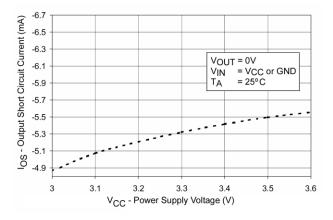


Figure 7. Output Short Circuit Current vs. Power Supply Voltage

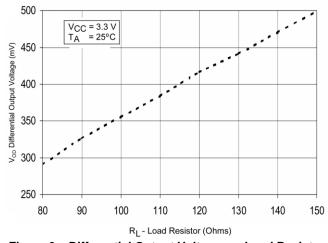


Figure 9. Differential Output Voltage vs. Load Resistor

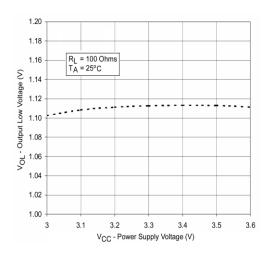


Figure 6. Output Low Voltage vs. Power Supply Voltage

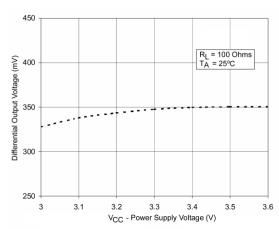


Figure 8. Differential Output Voltage vs. Power Supply Voltage

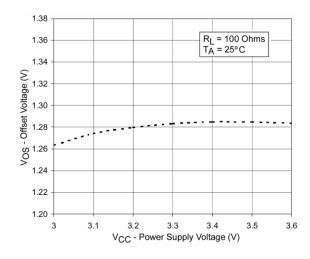


Figure 10. Offset Voltage vs. Power Supply Voltage

Typical Performance Characteristics (Continued)

Figure 11. Power Supply Current vs. Frequency

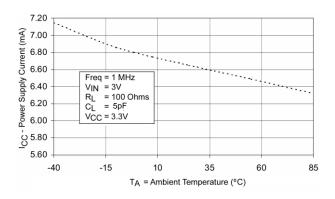


Figure 13. Power Supply Current vs. Ambient Temperature

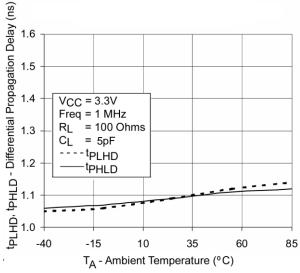


Figure 15. Differential Propagation Delay vs. Ambient Temperature

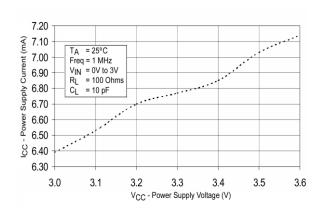


Figure 12. Power Supply Current vs. Power Supply Voltage

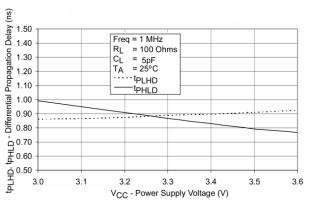


Figure 14. Differential Propagation Delay vs. Power Supply

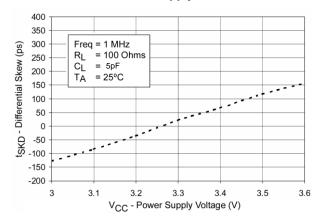


Figure 16. Differential Pulse Skew (tplh - tphl) vs. Power Supply Voltage

Typical Performance Characteristics (Continued)

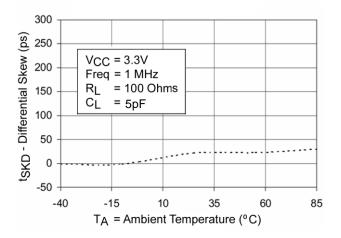


Figure 17. Differential Pulse Skew (tplh - tphl) vs.
Ambient Temperature

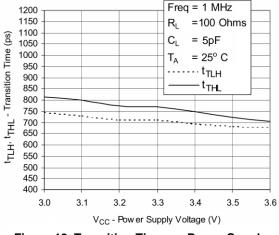


Figure 18. Transition Time vs. Power Supply Voltage

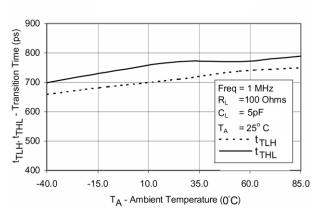
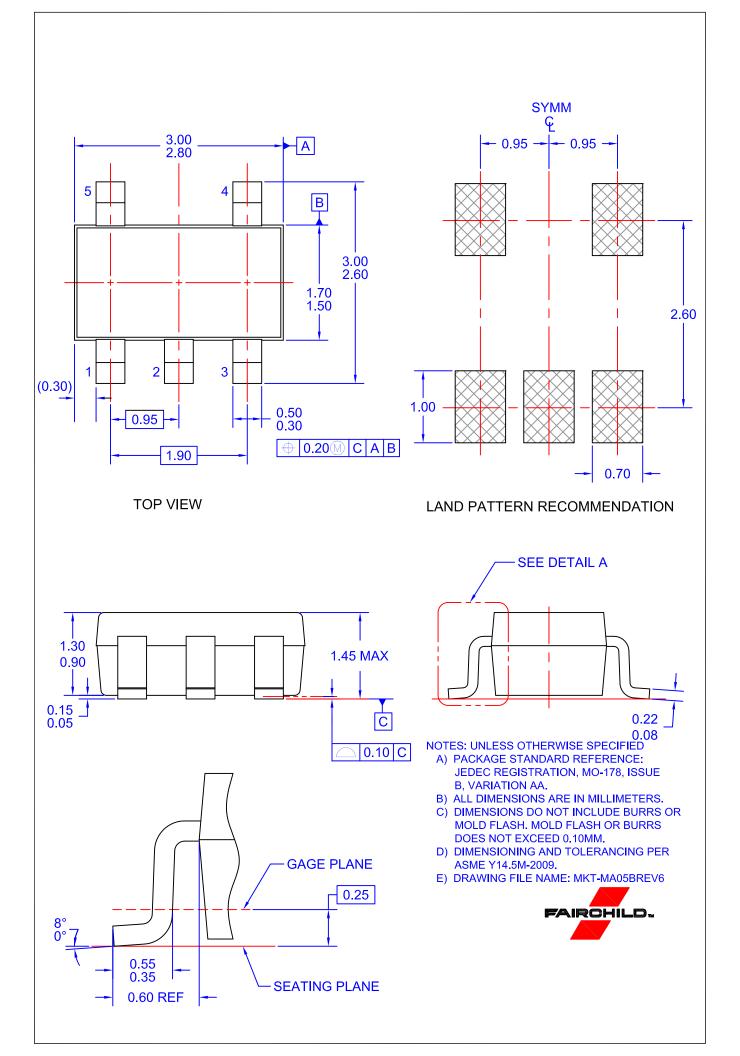



Figure 19. Transition Time vs. Ambient Temperature

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and exp

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative